Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 6)

Mini-Tools

 
 

Search Report

  • 1. Donovan, Molly Impact of Free-Stream Turbulence Intensity on the Endwall Region of Low Pressure Turbine Blades

    Doctor of Philosophy (Ph.D.), University of Dayton, 2023, Aerospace Engineering

    Turbomachinery components, such as the low pressure turbine, are highly complex rotating machines, therefore, conducting fundamental fluid mechanics studies in them is exceedingly difficult. For this reason, testing is generally completed in facilities such as linear cascades, like the one present in the Low Speed Wind Tunnel Facility at AFRL, which typically utilize a low freestream turbulence intensity, when in reality, the freestream turbulence intensity in a full, rotating low pressure turbine is likely much higher. Slightly elevating the freestream turbulence intensity (e.g., 3%) typically improves the Reynolds-lapse characteristics of a blade profile by affecting the transition process, reducing the detrimental effects of laminar boundary layer separation, and shifting the knee in the loss curve. Front loaded blades are more resistant to separation, however, they can experience high losses in the endwall region due to the complex vortical structures present. Therefore, a better understanding whether high levels of freestream turbulence intensity will increase the overall losses generated in the passage is important. An intial study with a jet based active grid was completed on the L2F blade. Based of the insight gained from that study, a new mechanical agitator based active grid was implemented into a linear cascade of L3FHW-LS blades in order to more effectively study how elevated FSTI impacts the endwall flow behavior and loss production. Coefficient of pressure measurements, three planes of SPIV, two additional planes of flow visualization, and three planes of total pressure loss measurements were collected. Impacts of incoming turbulence on the endwall losses as well as the endwall flow structures were assessed.

    Committee: Markus Rumpfkeil (Advisor); Christopher Marks (Committee Member); Sidaard Gunasekaran (Committee Member); John Clark (Committee Member) Subjects: Aerospace Engineering
  • 2. Scott, Mitchell Turbine Passage Vortex Response to Upstream Periodic Disturbances

    Master of Science in Mechanical Engineering (MSME), Wright State University, 2020, Mechanical Engineering

    Flow through the turbine section of gas turbine engines is inherently unsteady due to a variety of factors, such as the relative motion of rotors and stators. In low pressure turbines, periodic wake passing has been shown to impact boundary layer separation, blade surface pressure distribution, and loss generation. The effect of periodic disturbances on the endwall flow is less understood. Endwall flow in a low-pressure turbine occurs in the boundary layer region of the flow through the blade passage where the blade attaches to the hub in the turbine. The response of an endwall vortical structure, the passage vortex, to various upstream disturbances is considered in this investigation. The passage vortex is a three-dimensional unsteady flow feature which generates aerodynamic losses as it interacts with the flow along the blade suction surface. High-speed velocimetry and numerical simulations have shown that the vortex intermittently loses coherence and varies in strength and position over time. The intermittent loss of coherence of the passage vortex is believed to be related to the leading-edge junction flow dynamics. An array of pneumatic devices was installed upstream of a linear cascade of low-pressure turbine blades to produce periodic disturbances that impact the blade leading edge region. A small disturbance and a large disturbance were created and characterized by their maximum velocity deficit and nondimensionalized solenoid valve on time using a plane of particle image velocimetry. A plane of high-speed stereoscopic particle image velocimetry data was collected inside the blade passage to examine how the disturbances impacted the vortex. Surface-mounted hot-film data was collected near the leading edge and in passage region to help relate flow behavior in both locations. The size and frequency of the disturbances had a nonlinear impact on the vortex size and strength. Fourier analysis revealed that the actuation frequency caused a harmonic response, and a (open full item for complete abstract)

    Committee: Mitch Wolff Ph.D. (Advisor); Rolf Sondergaard Ph.D., P.E. (Committee Member); Christopher Marks Ph.D. (Committee Member) Subjects: Mechanical Engineering
  • 3. Fletcher, Nathan Design and Implementation of Periodic Unsteadiness Generator for Turbine Secondary Flow Studies

    Master of Science in Mechanical Engineering (MSME), Wright State University, 2019, Mechanical Engineering

    A primary source of periodic unsteadiness in low-pressure turbines is the wakes shed from upstream blade rows due to the relative motion between adjacent stators and rotors. These periodic perturbations can affect boundary layer transition, secondary flow, and loss generation. In particular, for high-lift front-loaded blades, the secondary flowfield is characterized by strong three-dimensional vortical structures. It is important to understand how these flow features respond to periodic disturbances. A novel approach was taken to generate periodic unsteadiness which captures some of the physics of turbomachinery wakes. Using stationary pneumatic devices, pulsed jets were used to generate disturbances characterized by velocity deficit, elevated turbulence, and spanwise vorticity. Prior to application in a turbine flow environment, the concept was explored in a small developmental wind tunnel using a single device. The disturbance flowfield for different input settings was measured using hot-film anemometry and Particle Image Velocimetry. Insight was also garnered on how to improve later design iterations. With an array of devices installed upstream of a linear cascade of high-lift front-loaded turbine blades, settings were found which produced similar disturbances at varying frequencies that periodically impinged upon the leading-edge region. These settings were used to conduct an in-passage secondary flow study using high-speed Stereoscopic Particle Image Velocimetry. Results demonstrated the application of the periodic unsteadiness generator but found minor changes to the passage vortex. The vortex rotational strength decreased, and migration increased with increased perturbation frequency. Fourier analyses found the PV to be responsive at the actuation frequency with phase-locked ensemble-averaged data revealing that the disturbance periodically caused the PV to lose rotational strength. However, at the tested discrete frequencies, the vortex did not become locked (open full item for complete abstract)

    Committee: Mitch Wolff Ph.D. (Advisor); Rolf Sondergaard Ph.D. (Committee Member); Christopher Marks Ph.D. (Committee Member) Subjects: Aerospace Engineering; Engineering; Experiments; Fluid Dynamics; Mechanical Engineering
  • 4. Donovan, Molly Unsteady Effects of a Pulsed Blowing System on an Endwall Vortex

    Master of Science in Mechanical Engineering (MSME), Wright State University, 2019, Mechanical Engineering

    The low-pressure turbine is an important component of a gas turbine engine, powering the low-pressure spool which provides the bulk of the thrust in medium- and high-bypass engines. It is also a significant fraction of the engine weight and complexity as it can comprise up to a third of the total engine weight. One way to drastically reduce the weight of the low-pressure turbine is to utilize high lift blades. To advance high-lift technology, the Air Force Research Laboratory (AFRL) designed the L2F blade profile, which was implemented in the linear cascade at AFRL/RQT's low speed wind tunnel facility. The L2F blade has very high lift and an excellent midspan performance, however, it was previously demonstrated to generate significant losses in the endwall region. These losses are primarily driven by the complex time-dependent three-dimensional vortical structures present in the region of the junction of the blade and the endwall, dominated by the Passage Vortex (PV). Aerodynamic flow control is one way to mitigate these losses. Previously, a pulsed endwall blowing system was implemented in the endwall region of the L2F blade which produced a loss reduction. This loss reduction was dependent on the pulsing frequency. In this research, the vortical structures for the baseline flow were characterized with respect to time. The time dependent behavior of the passage vortex motion, location, and strength were found for each pulsing frequency to determine a relationship with total pressure loss reduction. The flow through the passage of the tunnel was characterized with respect to time using high-speed stereoscopic particle image velocimetry. The flow for each test condition was characterized using Q-criterion to determine the strength of the passage vortex and its time dependent behavior. It was found that the passage vortex loses and gains strength in an unsteady manner at time scales between 1.9 < ΔT+ < 6.7. The largest total pressure loss reduction was found to corres (open full item for complete abstract)

    Committee: Mitch Wolff Ph.D. (Advisor); Christopher R. Marks Ph.D. (Committee Member); Rolf Sondergaard Ph.D., P.E. (Committee Member) Subjects: Mechanical Engineering
  • 5. Dickel, Jacob Design Optimization of a Non-Axisymmetric Endwall Contour for a High-Lift Low Pressure Turbine Blade

    Master of Science in Mechanical Engineering (MSME), Wright State University, 2018, Mechanical Engineering

    Various approaches have been used to shape the geometry at the junction of the endwall and the blade profile in high-lift low-pressure turbine passages in order to reduce the endwall losses. This thesis will detail the workflow to produce an optimized non-axisymmetric endwall contour design for a front-loaded high-lift research turbine profile. Validation of the workflow was performed and included a baseline planar and test contour case for a future optimization study. Endwall contours were defined using a series of Bezier curves across the passage to create a smooth surface. A parametric based approach was used to develop the test contour shape with a goal of directing incoming endwall flow at the leading edge towards the suction side of the blade. A commercial RANS flow solver was used to model the flow through the passage. The test contour performance was measured in a low-speed linear cascade wind tunnel to verify that the numerical tools adequately captured the necessary endwall flow physics. The numerical model showed excellent agreement of total pressure loss and endwall flow structure compared with experimental measurements. Utilizing the validated workflow, the grid size, mesh deformation method, and commercial RANS flow solver, previously determined to be adequate, were used to optimize the endwall and gave confidence that the optimized contour would perform well experimentally. A genetic algorithm was used to optimize the endwall and to improve the total pressure loss characteristics. Experimental measurements for the final optimized endwall were obtained in the low-speed wind tunnel. Comparisons between the planar endwall, test case endwall, and optimized endwall shapes were made to show how different shapes affect the flowfield. The test case endwall was found to reduce the losses associated with the passage vortex, while the optimized endwall reduced losses associated with the suction side corner separation vortex.

    Committee: Mitch Wolff Ph.D. (Advisor); Christopher Marks Ph.D. (Committee Member); Rolf Sondergaard Ph.D. (Committee Member) Subjects: Aerospace Engineering; Fluid Dynamics; Mechanical Engineering
  • 6. Nickol, Jeremy Airfoil, Platform, and Cooling Passage Measurements on a Rotating Transonic High-Pressure Turbine

    Doctor of Philosophy, The Ohio State University, 2016, Mechanical Engineering

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other compr (open full item for complete abstract)

    Committee: Randall Mathison (Advisor); Michael Dunn (Committee Member); Sandip Mazumder (Committee Member); Jeffrey Bons (Committee Member) Subjects: Aerospace Engineering; Engineering; Mechanical Engineering