Master of Science, The Ohio State University, 2017, Electrical and Computer Engineering
Zinc oxide (ZnO) has emerged as a promising wide bandgap material (3.35eV at 300K) for use in next-generation nanoelectronics and photonics, with important piezoelectric, pyroelectric, sensing, and optoelectronic properties. ZnO has seen specific application in ultraviolet (UV) photodetectors, UV lasers [1], hydrogen gas sensors [2, 3], surface acoustic wave devices, piezoelectric generators [4], and transparent thin-film transistors for displays [5]. Various forms of ZnO nanostructures, such as nanobelts, nanobows, and nanowires, and have all attracted significant attention due to their ease of fabrication, remarkable relative surface area, and low-dimensional nature [6, 7]. Nanowires of ZnO in particular can exhibit pinch-off of electrical current with surface charge-sensitive depletion depths that are on the order of the wire radius [8, 9]. In bulk ZnO, defects have been shown to strongly affect the behavior of metal contacts, by modifying band bending and allowing trap-assisted tunneling transport through the metal-ZnO Schottky barrier [10]. The electronic impact of native point defects becomes critical at the nanoscale, since their physical properties can dominate charge carrier transport and especially electronic contact behavior.
In order to control the distribution of defects at the metal-nanowire interface, various forms of surface modification were investigated. We report the in-situ fabrication of both Ohmic and Schottky platinum (Pt) metal contacts to single ZnO nanowires prepared by pulsed laser deposition (PLD) and carbothermal vapor phase transport, using Ga-ion surface modification and both furnace and electron beam annealing. A Ga focused ion beam (FIB) was operated at 30 keV to implant nanowire surfaces before metallization for production of Ohmic contacts, and at 5 keV to gently mill the defect-rich outer annulus, promoting formation of Schottky contacts. Electron beam induced deposition (EBID) was used to pattern Pt metal contacts to the wire (open full item for complete abstract)
Committee: Leonard Brillson (Advisor); Betty Lise Anderson (Committee Member)
Subjects: Electrical Engineering