Doctor of Philosophy, The Ohio State University, 2004, Materials Science and Engineering
In this work, AC loss in superconducting composites was described using both an anisotropic continuum model and a discrete model. The efforts were concentrated in three main areas. First, the eddy current coupling loss of composites with rectangular cross section was calculated using an anisotropic continuum description based on a block model with different effective resistivities in each block. In this case, a numerical approach was used. This treatment, like the more typical lumped component network model, was able to describe many factors influencing the eddy current loss in the rectangular composites, such as twist pitch, aspect ratio, and core resistivity. However, the influence of core thickness and the presence of an outer sheath were also described with this model. Certain simplifying assumptions were used here to minimize computation time, while allowing the essential information to be extracted. In the second area, the eddy current loss of round composites were calculated from a discrete (network) point of view, and analytic expressions were developed which allow comparison to analytic expressions which were derived from effective medium theory. We need to measure only the contact resistance between the strands. The eddy current coupling loss of seven-strand MgB2 cables were then calculated by this model. With this model, it was possible to use a measured contact resistance between the strands to both predict the loss and compare to effective medium based resistivities. The results from the block model and from the analytical model give results in reasonable agreement. In the third part of the work, we attempt to compare the developed expressions to experiment. In some cases, data extant in the literature were used; in other cases, direct measurements were performed. For the rectangular geometry composites, existing data were sufficient. In the case of round composites, direct experiments were performed. The specific working medium chosen was round, seven- (open full item for complete abstract)
Committee: Suliman Dregia (Advisor)
Subjects: Engineering, Materials Science