Doctor of Philosophy (PhD), Wright State University, 2009, Engineering PhD
The use of aerodynamic actuators, such as leading edge slats, trailing edge flaps, roughing strips and ailerons interact with the air during flight, providing maneuverability for air vehicles. These mechanical devices have many inherent, detrimental attributes, such as space requirements on the wing, added wing weight, second response times, increased drag, and increased airframe vibration, resulting in the production of noise. The potential to eliminate or improve upon these detrimental attributes may be realizable by replacing the current mechanical actuators with plasma actuators. Specifically, the surface-discharge-mode, dielectric barrier discharge (SDBD), plasma actuator has a response time on the order of microseconds to milliseconds, does not increase vibration by mounting flush to the wing surface, does not increase drag, and adds negligible weight to the wing. Unfortunately, these devices are not yet powerful enough to perform many of the tasks required for aerodynamic applications; however, they have demonstrated the potential to do so, providing motivation for the current study. Currently, the approach of the research community has focused on coordinating studies designed to determine the physics of the device and parametric studies to determine optimal configurations required for immediate application. In this work, an experimentally based study utilizing optical emission spectroscopy, current-voltage measurements, and a force balance have been successfully applied, contributing new, specific detail to the morphology and characterization of the SDBD. The results of this study were tailored to aid the development of the appropriate, essential physics required for computational modeling of the SDBD. Initially, force measurements of the induced thrust were obtained to demonstrate how week the induced thrust is, justifying the need for a fundamental study. These results are also important in understanding an apparent discrepancy in the reported dependence o (open full item for complete abstract)
Committee: James Menart PhD (Advisor); William Bailey PhD (Committee Member); Jerry Clark PhD (Committee Member); Roger Kimmel PhD (Committee Member); Joseph Shang PhD (Committee Member); Henry Young PhD (Committee Member)
Subjects: Electrical Engineering; Fluid Dynamics; Mechanical Engineering; Physics