Doctor of Philosophy, University of Akron, 2016, Mechanical Engineering
In this dissertation, a comprehensive study of ductile damage of metallic materials is presented, covering constitutive modeling, numerical implementation and model calibration and verification.
As the first part of this dissertation, a pressure-insensitive plasticity model, expressed as a function of the second and third invariants of the stress deviator (J2 and J3), is presented. Depending on whether the power of the J3 term is odd or even, the proposed model can capture either the tension-compression strength-differential (S-D) effect or the torsion-tension strength-differential effect of the material. The plasticity model with an odd power to the J3 item has been calibrated and validated using measured experimental data of a ß-treated Zircaloy-4 with a wide range of triaxiality and Lode parameter values. Results show that this model captures the strong strength-differential (S-D) effect in the material. The plasticity model with an even power to the J3 item is able to capture the isotropic plastic behavior of a stainless steel Nitronic 40, under various stress states with good accuracy and computational efficiency. Next, the effect of the material's plasticity behavior on the ductile damage process is studied by conducting a series of unit cell analyses of a void-containing representative material volume (RMV), where the plastic response of the matrix material is governed by the J2-J3 dependent plasticity model.
To simulate the ductile damage process in anisotropic materials, a new constitutive model, which combines the models proposed by Zhou et al. (2014) and Stewart and Cazacu (2011), is developed and employed to study the plasticity and ductile fracture behavior of a commercially pure titanium (CP Ti). In particular, a Gurson-type porous material model is modified by coupling two damage parameters, accounting for the void damage and the shear damage respectively, into the yield function and the flow potential. The plastic anisotropy and tension-compre (open full item for complete abstract)
Committee: Xiaosheng Gao Dr. (Advisor); Yalin Dong Dr. (Committee Member); Chang Ye Dr. (Committee Member); Ernian Pan Dr. (Committee Member); Kevin Kreider Dr. (Committee Member)
Subjects: Mechanical Engineering; Mechanics