Doctor of Philosophy (PhD), Wright State University, 2005, Engineering PhD
Pulikollu, Rajasekhar Venkata. Ph.D., Department of Mechanical and Materials Engineering, Wright State University, 2005. Nano-coatings on Carbon Structures for Interfacial Modification. Surface modification of materials is a rapidly growing field as structures become smaller, more integrated and complex. It opens up the possibility of combining the optimum bulk properties of a material with optimized surface properties such as enhanced bonding, corrosion resistance, reactivity, stress transfer, and thermal, optical or electrical behavior. Therefore, surface functionalization or modification can be an enabling step in a wide variety of modern applications. In this dissertation several surface modification approaches on carbon foam and carbon nano-fibers will be discussed. These are recently developed sp 2 graphitic carbon based structures that have significant potential in aerospace, automotive and thermal applications. Influence of surface modification on composite formation and properties have also been investigated. Two types of property changes have been investigated: one for enhancing the surface reactivity and another for surface inertness. Characterization techniques such as X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Contact Angle Measurement, Scanning Electron Microscope (SEM), Transmission Electron Microscope(TEM), and mechanical testing are used in this study to find out the influence of these coatings on surface composition, chemistry, and morphology. Mechanical testing has been performed on composites and stand-alone foam to study the influence of surface modification on physical and mechanical properties of the composite materials. The effectiveness of these coatings on metallic/graphite interface has also been investigated for metal-matrix composite related applications. Additionally, the influence of plasmacoatings on nucleation and growth of nanotubes on larger carbon structures (to produce multiscale, multifunctional mater (open full item for complete abstract)
Committee: Sharmila Mukhopadhyay (Advisor)
Subjects: Engineering, Materials Science