MS, Kent State University, 2016, College of Arts and Sciences / Department of Earth Sciences
Clays are used widely in sanitary landfills, embankment dams, highway embankments, hydraulic barriers, and foundations. In most of these applications, clays are compacted at maximum dry density (MDD) and optimum water content (OWC). Density and water content have a profound effect on the strength and deformation behavior of compacted clays. However, this effect has not been quantified in detail, especially the water content at which transition from brittle to plastic behavior occurs for low, medium, and high plasticity clays. The objective of this research was to investigate the effect of varying water content and density on the strength and deformation behavior of low, medium, and high plasticity clays, and to quantify the transition water content between brittle and plastic behavior for each type of clay.
Initially, six samples each of low, medium, and high plasticity clays were compacted, three on the dry side and three on the wet side of OWC, to establish their compaction curves. The compacted samples were failed axially under unconfined compression and were visually inspected to determine the water content at which transition occurred between brittle and plastic deformation. Additionally, three samples of each type of clay were compacted at different water contents and failed using the direct shear test. The stress-strain curves from both tests were used to determine the transition water content between brittle and plastic behaviors.
The MDD values for low, medium, and high plasticity clays were found to be 102.5 lb/ft3 (1.64 Mg/m3), 95 lb/ft3 (1.52 Mg/m3), and 89.5 lb/ft3 (1.43 Mg/m3), with the corresponding OWC values of 18%, 25%, and 27%, respectively. The compressive strength values for the low, medium, and high plasticity clays at MDD and OWC were 54 psi (344.8 kPa), 59 psi (413.8 kPa), and 60 psi (420.7 kPa), respectively. The unconfined compressive strength first increased and then decreased with increasing water content, with the change in (open full item for complete abstract)
Committee: Abdul Shakoor (Advisor); Daniel Holm (Committee Member); Neil Wells (Committee Member)
Subjects: Engineering; Geology; Soil Sciences