Master of Science (MS), Wright State University, 2014, Earth and Environmental Sciences
Using well logs and AVO gradient analysis, I identify and characterize a package of reflectors associated with the Utica Shale from vibroseis data collected by Wright State University at the Gabor Gas Storage field near Canton, Ohio. I also correlate TOC measurements from wells to densities and velocities at the same depths. On the seismic data, I interpret prominent reflections from the top and bottom of the Utica Shale and an intra-Utica reflector of varying frequency content associated with a velocity/density low in well log data. I investigate the possibility that the lateral variation in frequency content and change in wavelet character of these reflections is influenced by velocity gradients, termed Wolf Ramps. A Matlab software script was written in order to approximate this behavior using synthetic wavelets, and the resulting model matched well with the seismic data. Additionally, I note a possible reverse fault within the Utica that could create fracture porosity and a migration pathway. To model the AVO response, an AVA volume was created from prestack data and reflection coefficients up to 30 degrees of incidence were calculated using the two-term Aki-Richards approximation. Large negative normal incidence reflection coefficients attenuated at higher angles of incidence (Class IV anomalies) were observed at the top of Utica reflector, a response consistent with a change from silica-rich nonsource shale to black source shale. Large positive normal incidence reflection coefficients decreasing at higher angles of incidence (Class I anomalies) were noted at the bottom of Utica reflector, consistent with a shift from low impedance source shale to higher impedance calcareous shale.
To perform forward modeling, I used geophysical well logs and NS-EW vibroseis line data. Using Hampson Russell commercial software, acoustic impedance and reflectivity were computed from sonic and density logs. An average wavelet at the Utica two-way travel time was extracte (open full item for complete abstract)
Committee: Doyle Watts Ph.D. (Advisor); Ernest Hauser Ph.D. (Committee Member); David Dominic Ph.D. (Committee Member)
Subjects: Geology; Geophysics