Doctor of Philosophy, University of Akron, 2024, Mechanical Engineering
Processing-related defects such as porosity, residual stress, and surface roughness are the primary impediments to the widespread adoption of additive manufacturing in high-performance aerospace structures, primarily in applications where fatigue is an area of concern. Strengthening the surface through an emerging surface treatment approach has the potential to mitigate these defects and subsequently improve the surface quality, as well as increase the fatigue strength of the additively manufactured components. The core objective of this research work was to employ a severe surface plastic deformation (SSPD) process to improve the surface and fatigue properties of additively manufactured Ti-6Al-4V alloys with a particular emphasis on directed energy deposition (DED) re-paired and fully produced electron beam powder bed fusion (EB-PBF), via combination of laser heating (LA) and ultrasonic nanocrystal surface modification (UNSM). Laser heating plus ultrasonic nanocrystal surface modification is an innovative mechanical sur-face treatment tool, and it has been demonstrated as an interesting laser-based mechanical surface treatment technology to induce thicker deformation layer on the surface using low energy input, impact load, low amplitude, and high ultrasonic frequency, leading to enhancement of the microstructure features, surface strength, and resultant mechanical properties of metallic materials. Physical and mechanical characteristics changes in target materials were investigated using optical (OM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), profilometry, and a hardness tester. The results revealed that the proper thermal and impact energies of the applied surface treatment was effective in inducing higher plasticity flow and promoted greater surface grain refinement. Strengthening of metallic alloys through grain refinement is evidenced by achieving maximum strength, a phenomenon referred to as the Hall-Perch principle. In particular, the s (open full item for complete abstract)
Committee: Gregory Morscher (Advisor); Yalin Dong (Committee Member); Jun Ye (Committee Member); Wieslaw Binienda (Committee Member); Manigandan Kannan (Committee Member)
Subjects: Aerospace Materials; Materials Science; Mechanical Engineering