PhD, University of Cincinnati, 2013, Engineering and Applied Science: Civil Engineering
The accurate measurement of vehicle classification is a highly valued factor in traffic operation and management, validations of travel demand models, freight studies, and even emission impact analysis of traffic operation. Inductive loops are increasingly used specifically for traffic monitoring at highway traffic data collection sites. Many studies have proven that the vehicle speed can be estimated accurately by using dual-loop data under free traffic condition, and then vehicle lengths can be estimated accurately. The capability of measuring vehicle lengths makes dual-loop detectors a potential real-time data source for vehicle classification. However, the existing dual-loop length-based vehicle classification model was developed with an assumption that the difference of a vehicle's speed on the first and the second single loop is not significant. Under congested traffic flows, vehicles' speeds change frequently and even fiercely, and the assumption cannot be met any more. The outputs of the existing models have a high error rate under non-free traffic conditions (such as synchronized and stop-and-go congestion states). The errors may be contributed by the complex characteristics of traffic flows under congestion; but quantification of such contributing factors remains unclear.
In this study, the dual-loop data and vehicle classification models were evaluated with concurred video ground-truth data. The mechanism of the length-based vehicle classification and relevant traffic flow characteristics were tried to be revealed. In order to obtain the ground-truth vehicle event data, the software VEVID (Vehicle Video-Capture Data Collector) was used to extract high-resolution vehicle trajectory data from the videotapes. This vehicle trajectory data was used to identify the errors and reasons of the vehicle classifications resulted from the existing dual-loop model. Meanwhile, a probe vehicle equipped with a Global Positioning System (GPS) data logger was used t (open full item for complete abstract)
Committee: Heng Wei Ph.D. (Committee Chair); Changjoo Kim Ph.D. (Committee Member); Herbert Bill Ph.D. (Committee Member); Anant Kukreti Ph.D. (Committee Member)
Subjects: Civil Engineering