Doctor of Philosophy (PhD), Ohio University, 2011, Mathematics (Arts and Sciences)
An R module M is herein called torsion if each element has nonzero annihilator, and faithful if the annihilator of M is zero. The central theme of this dissertation is exploration of which rings admit modules that are simultaneously faithful and torsion, termed FT modules. If a ring R admits an FT right module, it is called right faithful torsion or a right FT ring, and similarly for the left-hand side. The ring is said to have FT rank equal to κ if κ is a nonzero cardinal and is the least cardinality of a generating set for an FT module over R. By convention, rings which are not FT have FT rank 0.
After a survey of the requisite definitions from abstract algebra, several observations are made and lemmas are proven. It is shown that a ring with infinite right FT rank must have a properly descending chain of nonzero ideals of the same length as its FT rank. Using families of ideals with the finite intersection property, we construct torsion modules which are faithful when the family has intersection zero. Using this, it is possible to show that infinite FT ranks can only be regular cardinals. We determine the propagation of FT rank in standard ring constructions such as direct products, matrix rings, and the maximal right ring of quotients. To paraphrase the results: a product is FT if it has an FT factor, infinite products are always FT, matrix rings are often FT, and the FT property travels down from the maximal right ring of quotients.
The next portion of the dissertation gives an account of all that is known about several classes of rings and whether they are FT or not. The two prominent examples of rings that are not right FT are 1) quasi-Frobenius rings R such that R/rad(R) is a finite product of division rings, and 2) any ring R with an essential minimal right ideal. We show that finite products of simple rings are FT exactly when they are not finite products of division rings, with possible ranks 0 and 1. Domains are FT exactly when they are not division ri (open full item for complete abstract)
Committee: Sergio Lopez-Permouth PhD (Advisor); Phillip Ehrlich PhD (Committee Member); Dinh Huynh PhD (Committee Member); William Kaufman PhD (Committee Member); Gregory Oman PhD (Committee Member)
Subjects: Mathematics