Doctor of Philosophy, The Ohio State University, 2023, Electrical and Computer Engineering
Beta-phase gallium oxide (β-Ga2O3), with its ultrawide band gap energy (~4.8 eV), high predicted breakdown field strength (6-8 MV/cm), controllable n-type doping and availability of large area, melt-grown, differently oriented native substrates, has spurred substantial interest for future applications in power electronics and ultraviolet optoelectronics. The ability to support bandgap engineering by alloying with Al2O3 also extends β-(AlxGa1-x)2O3 based electronic and optoelectronic applications into new regime with even higher critical field strength that is currently unachievable from SiC-, GaN- or AlxGa1-xN- (for a large range of alloy compositions) based devices. However, the integration of β-(AlxGa1-x)2O3 alloys into prospective applications will largely depend on the epitaxial growth of high quality materials with high Al composition. This is considerably important as higher Al composition in β-(AlxGa1-x)2O3/Ga2O3 heterojunctions can gain advantages of its large conduction band offsets in order to simultaneously achieve maximized mobility and high carrier density in lateral devices through modulation doping. However, due to the relative immaturity of β-(AlxGa1-x)2O3 alloy system, knowledge of the synthesis and fundamental material properties such as the solubility limits, band gaps, band offsets as well as the structural defects and their influence on electrical characteristics is still very limited. Hence, this research aims to pursue a comprehensive investigation of synthesis of β-(AlxGa1-x)2O3 thin films via metal organic chemical vapor deposition (MOCVD) growth methods, building from the growth on mostly investigated (010) β-Ga2O3 substrate to other orientations such as (100), (001) and (-201), as well as exploring other polymorphs, such as alpha (α) and kappa (κ) phases of Ga2O3 and (AlxGa1-x)2O3 to provide a pathway for bandgap engineering of Ga2O3 using Al for high performance device applications. Using a wide range of material characterization techniqu (open full item for complete abstract)
Committee: Hongping Zhao (Advisor); Siddharth Rajan (Committee Member); Steven A. Ringel (Committee Member); Sanjay Krishna (Committee Member)
Subjects: Condensed Matter Physics; Electrical Engineering; Engineering; Materials Science; Nanoscience; Nanotechnology; Physics