Master of Science (MS), Wright State University, 2017, Physics
Due to shortcomings in emerging alkali-based atomic physics based systems, a need to investigate alkali resistant materials has arisen. There is interest in alkali based systems such as atomic clocks and diode pumped alkali laser (DPAL) systems. In the case of atomic clocks and DPALs, alkali metal vapor, such as Rb, is the active part of the systems. The alkali vapor is confined in some manner of housing, but the transmission of electromagnetic radiation is required in the cells. This requires the incorporation of windows into the cell. The current window material, however, have been shown to degrade over time, thus reducing the effectiveness of these systems. It is believed that the alkali atoms diffuse into the bulk of the housing material. This diffusion results in changes of optical and, in some cases, structural properties of the material. These changes lead to the degradation of window materials in these alkali-based systems.
In an effort to improve the longevity of alkali-based systems, a material study was conducted to identify window material that could resist diffusion-based changes in optical properties. Candidate materials were selected based on their structure, optical properties, and/or density. All candidate materials underwent baseline characterization. Baseline characterization techniques included atomic force microscopy, spectrophotometry, reflectometry, ellipsometry, and X-ray diffraction spectroscopy. Once baseline data was collected, the candidate materials were exposed to Rb at high temperatures for an extended period of time to simulate atomic physics devices. Exposure was achieved by heating the Rb source to ~ 550 °C while the candidate materials were kept at ~ 450 °C. This created a 100 °C temperature gradient to thoroughly expose the materials to gaseous Rb. After exposure, the materials underwent the same analysis techniques to ascertain the changes in structural and optical properties. Additionally, time of flight secondary ion mass spe (open full item for complete abstract)
Committee: Gregory Kozlowski Ph.D. (Advisor); Steven Fairchild Ph.D. (Committee Member); David Turner Ph.D. (Committee Member)
Subjects: Materials Science; Physical Chemistry; Physics