Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 1)

Mini-Tools

 
 

Search Report

  • 1. Li, Xuetao Mesomechanical Model for Failure Study of Two Dimensional Triaxial Braided Composite Materials

    Doctor of Philosophy, University of Akron, 2010, Civil Engineering

    Carbon fiber composite materials are being used in aerospace applications due to their excellent mechanical properties, such as high strength and stiffness as well as low density. Two dimensional triaxial braided polymer matrix composites have been shown to have improved performance under impact loads. Recently, many of the aircraft engine manufacturers have used such braided carbon fiber/epoxy composite for engine fan cases. A potential problem in application of triaxial braided composite is to understand the cracking, debonding and delamination. Simulation would reduce time and cost in the development of composite fan cases. Development of accurate computer model for simulation is crucial in predicting deformation and failure and to help understand experimental results. Multi-scale modeling is a well established approach to simulating textile composite behavior. This research focused on meso level modeling of triaxial braided composites. The unit cell scheme is used to take into account internal braiding architectures as well as mechanical properties of three phases: fibers tows, matrix and tow interfaces. Model requires local properties of the material so micromechanics approach is used to produce those material parameters for the model. Failure initiation and progressive damage concept has been implemented in the fiber tows by using the Hashin failure criterion and a damage evolution law. The weak/imperfect fiber tow interface is modeled by using a cohesive zone approach, where a zero thickness cohesive element technique is used and a mixed mode cohesive law is adopted based on fracture mechanics principles to evaluate crack initiation and predict crack propagation. This meso scale modeling technique has been used to examine and predict the failure observed in coupon tests. The tensile deformation and damage response of braided specimens is simulated and the results compared to experimentally obtained data. The effects of the fiber tow interface were inve (open full item for complete abstract)

    Committee: Wieslaw Binienda PhD (Advisor); Ernian Pan PhD (Committee Member); Yun Gunjin PhD (Committee Member); Gao Xiaosheng PhD (Committee Member); Kevin Kreider PhD (Committee Member); Robert Goldberg PhD (Committee Member) Subjects: Civil Engineering