Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 3)

Mini-Tools

 
 

Search Report

  • 1. Dadhich, Anang Electromagnetic Propulsion System for Spacecraft using Geomagnetic Fields and Superconductors

    MS, University of Cincinnati, 2016, Engineering and Applied Science: Aerospace Engineering

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

    Committee: Grant Schaffner Ph.D. (Committee Chair); George T Black M.S. (Committee Member); Kelly Cohen Ph.D. (Committee Member) Subjects: Aerospace Materials
  • 2. Walker, David Effect of Thruster Uncertainties on a Deep Space Mission Using Electric Propulsion

    Master of Sciences (Engineering), Case Western Reserve University, 2024, EMC - Aerospace Engineering

    As deep space missions expand in scope and distance, the efficiency of propulsion systems becomes paramount. This thesis analyzes the impact of small measurement errors in the thrust profiles of Hall-Effect Thrusters, a common type of electric propulsor, known for increased efficiency compared to traditional chemical propulsion despite lower thrust. Due to their prolonged operational times, these errors compound, affecting trajectory and mission success. Through analyzing the AEPS Hall-Effect Thruster prototype, designed for NASA's Artemis Program's Gateway space station, using curve fitting and a Monte Carlo simulation, we assess the effects of these errors on an example mission to Alpha Centauri. Results show plasma dynamics cause the majority of error, but cause minimal trajectory deviation and propellant loss. This reinforces electric propulsion's suitability for long-distance space travel. This work informs spacecraft mission design, providing valuable insights into fuel efficiency and system selection, as well as building upon NASA Glenn Research Center's Electric Propulsion and Power Laboratory's prior research.

    Committee: Bryan Schmidt (Committee Chair); John Yim (Other); Richard Bachmann (Committee Member); Paul Barnhart (Committee Member) Subjects: Aerospace Engineering; Engineering; Mechanical Engineering
  • 3. Ayers, Randolph A Method for Low Thrust Trajectory Optimization

    Master of Engineering, Case Western Reserve University, 2025, EMC - Aerospace Engineering

    Analysis of three missions has been carried out with a set of three power and three propulsion systems to determine system synergy as well as to find an optimal system for each mission. The three missions are GTO to LLO, LMO, and Titan flyby. The three propulsion systems of analysis are Hall Effect Thrusters, Magnetoplasmadynamic Thrusters, and VASIMR Thrusters. The three power systems of analysis are Silicon photovoltaics, multi-junction photovoltaics, and nuclear reactors. The mission to Low Lunar Orbit has a maximum trip time of 8 weeks, and four systems are capable of achieving this result. Those systems are Hall-Nuclear, MPDNuclear, VASIMR-MJ, and VASIMR-Nuclear, the last of which achieves the target in just 26 days. The VASIMR-Nuclear system is also capable of bringing the most passengers with a total capacity of 255 people. The mission to LMO was limited to a maximum trip time of 9 months, and 1 system is capable of achieving this result. This system is again VASIMR-Nuclear, capable of bringing 31 people the LMO in 241 days, or about 8 months. The mission to Titan flyby using the VASIMR-Nuclear system is capable of bringing 54500 kg of dry mass to Titan flyby at 1000 km at 3.13 km/s relative to the planet.

    Committee: Paul Barnhart (Advisor); Majid Rashidi (Committee Member); Richard Bachmann (Committee Member) Subjects: Aerospace Engineering