Master of Science, University of Akron, 2018, Civil Engineering
Glass is one of the principal waste products generated in the US. The use of these glass cullet in the construction of shoulder section could reduce the quantity of waste glasses that goes to the landfill. Certain type of cementing agent is required to bind these glass particles in shoulder. Enzyme induced carbonate precipitation (EICP) has shown early promise as a viable and sustainable ground improvement method. Water based EICP leads to faster infiltration of cementation solution due to high permeability, thus limiting the amount of available reaction substances to produce CaCO3 precipitate at desired locations. This problem may be solved to some extent by the use of high viscosity polymer as a carrier of cementation solution in place of water.
Laboratory tests performed on the recycled glass cullet showed the possibility of using them in the construction of shoulder section to prevent erosion. Moreover, a series of laboratory experiments performed showed that EICP worked well on the Ottawa sand but did not work well on recycled glass cullet. However, it was successful on the samples containing mixture of glass particles and Ottawa sand. The samples consisting up to 20% of recycled glass in the mixture were brittle and strong. The results of UCS testing showed the compressive strength of the intact sample decreases with increase in amount of recycled glass in the mixture. The pull out test carried out on the glass surface showed the possibility of application of EICP on the surface treated glass particles.
SEM, XRD and TGA results on the samples treated with polymer modified EICP verify the presence of CaCO3 and the strength of the samples were tested at different moisture contents. The treated sand columns were organic-inorganic composites with sand cemented by a CaCO3-PVA mixture. Unlike low molecular weight PVA, medium molecular weight PVA forms complex matrix with the CaCO3 precipitate which does not dissolve in water at room temperature. The unconfine (open full item for complete abstract)
Committee: Junliang Tao PhD (Advisor); Zhe Luo PhD (Committee Member); Qixin Zhou PhD (Committee Member)
Subjects: Civil Engineering