Doctor of Philosophy (Ph.D.), University of Dayton, 2021, Engineering
Time-domain back projection (BP) is a widely known method used in Synthetic Aperture Radar (SAR) image formation. Despite its advantages over other image formation algorithms, the BP method is hindered due to its computational complexity and its requirement of higher number of operations and processing power. Recently, Field Programmable Gate Array (FPGA) devices have been used for BP acceleration mainly due to their parallel processing capabilities, reconfigurability, scalability, and low power requirement.
This dissertation presents a new SAR BP algorithm that is tested on a CPU to test the acceleration and functionality and compared with a traditional floating-point based SAR BP algorithm. It is shown that fixed-point based BP algorithm is faster than traditional algorithm and it maintains a high output image quality. The proposed BP algorithm process images with 15.69% speedup on average, while maintaining high quality image outputs.
Recently, Intel introduced the Arria 10 FPGA which is the industry's first FPGA that includes single-precision hardened Floating-Point Units (FPUs) on DSP blocks. With the advent of hardened floating-point, FPGA designers have largely abandoned fixed-point processing. Therefore, a series of arithmetic tests are created to evaluate whether fixed-point processing is obsolete considering the FPGA performance. A performance metric is developed to calculate the FPGA performance in terms of logic utilization and kernel speed. All programs are tested with Intel Stratix V FPGA which does not have hardened FPUs and Intel Arria 10 FPGA for comparison. The performance metric indicates that, on average, there is a 20.18% performance increase when Stratix V processes fixed-point operations and 27.17% performance increase when Arria 10 processes fixed-point operations. Even with hardened FPUs, it is shown that the Arria 10 FPGA exhibits a significant logic reduction when processing fixed-point operations. The results clearly indicate that t (open full item for complete abstract)
Committee: Eric Balster Ph.D. (Advisor); Tarek Taha Ph.D. (Committee Member); Russell Hardie Ph.D. (Committee Member); Muhammad Islam Ph.D. (Committee Member)
Subjects: Electrical Engineering