Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 1)

Mini-Tools

 
 

Search Report

  • 1. Krutz, Nicholas On the Path-Dependent Microstructure Evolution of an Advanced Powder Metallurgy Nickel-base Superalloy During Heat Treatment

    Doctor of Philosophy, The Ohio State University, 2020, Materials Science and Engineering

    The realization of advanced alloy compositions in service relies on a thorough understanding of metallurgical processing variables. Within this work, the gamma prime precipitation of an advanced powder metallurgy nickel-base superalloy during controlled cooling from supersolvus temperatures is compared to prior alloy generations using a complement of characterization and modeling approaches. The on-cooling precipitation of the alloy is studied and characterized to calibrate a multi-scale precipitation model. The proposed framework incorporates a computationally efficient addition to the mean-field modeling approach that increases its ability to model dynamic, multi-modal gamma prime burst events. The gamma prime size predicted by the model shows good agreement with experimental results. The precipitation calculation is applied to the element integration points of a continuum Finite Element heat conduction simulation, where the latent heat generated from the precipitation is accounted for. The results are compared to experimental findings and indicate potential use of the model for evaluating precipitation effects at multiple length scales. The lattice misfit evolution of two commercial PM nickel superalloys during cooling from supersolvus temperatures is also characterized, using in-situ synchrotron X-Ray Diffraction (XRD). The diffraction pattern deconvolution necessary for quantifying misfit was accomplished by combining observation of the superlattice peak intensities with thermodynamic modeling to quantify the intensity relationship between the overlapping phases. The misfit from the XRD measurements was compared to the Scanning Electron Microscopy observations of gamma prime particle shapes for a subset of the experimental conditions. The trend of measured misfit agreed with the microstructural characterization. Time-resolved observations of the on-cooling lattice parameter suggest that lower-temperature changes to the peak intensity characteristics coinc (open full item for complete abstract)

    Committee: Michael Mills (Advisor); Wei Zhang (Advisor); Yunzhi Wang (Committee Member); Stephen Niezgoda (Committee Member) Subjects: Aerospace Materials; Engineering; Materials Science