PHD, Kent State University, 2020, College of Arts and Sciences / Department of Computer Science
Traditionally, the multi-party telepresence system is supported by one or more servers called Multipoint Control Unit(MCU). These servers are expensive, involve the third party in the system, and also bottleneck for large scale implementation. So, this dissertation presents protocols for autonomous Peer-to-Peer(P2P) implementation of Crowd-scale Telepresence System. The protocols use multiple features from widely adopted P2P network, Gnutella. The proposed protocols and strategies are designed based on the Principle of Distributed Computing (PDC) and the Principle of Priority-based Resource Allocation(PPRA). These principles are considered to address three of the four identified challenges of CMTS implementation, (1) Computational Challenge, (2) Temporal Challenge, and (3) Overcrowding Challenge. The fourth one is the visual challenge which is left for future work. The PDC is used to address the first two challenges by distributing of MCU's workloads among participating peers. The MCU consists of a Multipoint Controller(MC) and one or more Multipoint Processors(MP). For distributed MCU, the optimal placement of MC and MPs in the P2P overlay network is necessary, which is time-consuming because of exponential search space. So, a phase-based design approach is considered. For optimal placement of MC, three incremental protocols, such as GAncestor, ZePoP, and ZePoP-ε are presented. Then, multiple methods are discussed to place the MPs around the optimal MC. For supporting the desired frame rate, two versions of progressive timer management schemes are used at MPs. The protocol ZePoP-ε is designed based on PPRA that emphasis to properly utilize the limited resources of the P2P network. Thus, PPRA is used to address the overcrowding challenge as well as the temporal challenge. It is used to design a profit-based stream collection mechanism of ZePoP-ε for maximizing a Dynamic Role and Demand based Index (DRDI) in bounded waiting time. The proposed protocols and methods co (open full item for complete abstract)
Committee: Javed I Khan (Advisor); Cheng Chang Chang Lu (Committee Member); Gokarna P Sharma (Committee Member); Murali Shanker (Committee Member); Jun Li (Other)
Subjects: Computer Science