PhD, University of Cincinnati, 2008, Engineering : Computer Science and Engineering
Currently, Peer-to-Peer overlays can be classified into two main categories: unstructured and structured ones. Unstructured overlays are simple, robust, and powerful in keyword search. Structured ones can scale to very large systems in terms of node number and geography, and guarantee to locate an object within O(Log N) hops. However, both of them face difficulties in efficiency and security of overlays. For unstructured ones, the efficiency problem presented is poor scalability. For structured ones, it is long routing latency and enormous overhead on handling system churn. Moreover, both of them are vulnerable to malicious attacks. Peer-to-Peer overlays belong to application-level network. To a great extension, overlay network designs ignore physical characteristics. As the result, their structures are far from underlying physical network or the distribution pattern of overlay peers. These inconsistencies induce system common operations costly, such as routing and lookup. On the other hand, most peers are assumed to have uniform resources and similar behaviors. Thus, Peer-to-Peer protocols were designed to be symmetric. However, in the realistic environment, peers' resources and behaviors are highly skewed. Symmetric protocols actually compromise system performance. Frequently joining and leaving of peers generates enormous traffic. The significant fraction of peers with high latency/low bandwidth links increase lookup latency. Moreover, under the environment without mutual trust, Peer-to-Peer systems are very vulnerable for varied attacks because they lack a practical authentication mechanism. From a different perspective, this dissertation proposes to construct a highly efficient and secure Peer-to-Peer overlay based on the physical network structure of the Internet and network locality of overlay peers. By naturally integrating different network-aware techniques into the Peer-to-Peer overlay, a novel SNSA (Scalable Network Structure Aware) technique has been dev (open full item for complete abstract)
Committee: Dr. Yiming Hu (Advisor)
Subjects: Computer Science