Master of Science, University of Toledo, 2006, Biology (Ecology)
It is well known that invasive species, such as the dreissenid mussels in the Great Lakes, play significant roles in changing the substrate, community species composition, and habitat. This study examined the role of Dreissena, (zebra mussel, D. polymorpha and quagga mussel, D. bugensis) as an invasive “paver”, which compacts the sediment, and its effects on two native bioturbators, Hexagenia (burrowing mayflies; H. limbata and H. rigida) and unionid bivalve mollusks. Resulting consequences on sediment properties, infaunal invertebrates, and microbial community composition were analyzed. I further examined the spatial relationship between Dreissena and Hexagenia. Experiments showed that Hexagenia density increased in the presence of Dreissena, nematodes decreased, and oligochaetes and microbes were unaltered. In the absence of Dreissena, bioturbating species altered sediment water content and increased infaunal invertebrate densities, microbial activity, and microbial functional diversity. In further exploration of the relationship between Dreissena and Hexagenia, Hexagenia preferred habitat with 50-100% spatial coverage of live Dreissena clusters. These experiments thus revealed habitat facilitation by an invasive ecosystem engineer on a native ecosystem engineer, Hexagenia, with opposite effects on invertebrates, microbes, and sediment properties.
Committee: Christine Mayer (Advisor)
Subjects: