Doctor of Philosophy (Ph.D.), University of Dayton, 2023, Electrical Engineering
Lithium-ion batteries (LIBs) have transformed modern electronics and rapidly advancing electric vehicles (EVs) due to high energy, power, cycle-life, and acceptable safety. However, the comprehensive commercialization of EVs necessitates the invention of LIBs with much enhanced and stable electrochemical performances, including higher energy/power density, cycle-life, and operation safety but at a lower cost. An unprotected lithium-ion battery (LIB) cell cathode using lithium metal anode and organic carbonate liquid electrolyte undergoes significant structural damage during the cycling (Li+ intercalation/ deintercalation) process. Also, a bare cathode in contact with a liquid electrolyte forms a resistive cathode electrolyte interface (CEI) layer. Both the cathode structure damage and CEI lead to rapid capacity fade.
Different strategies have been used to mitigate the degradation of LIB electrodes, including designing electrolytes to enhance SEI/CEI formation, cycle stability, interface engineering with protective coatings to prevent the breakdown of active material particles during cycling, composition control of the electrode particles, synthetic optimization to control particle morphology, the use of composites made from conductive scaffolds and active materials and designing new electrode architectures to overcome volume changes and enhance transport properties. Cathode surface modification has been used to reduce CEI formation and structural damage, improving capacity retention, cycle life, energy density, power density, and safety of a LIB.
Recently, the coating of the cathode with an intermediate layer (IL), which is transparent to Li+ conduction but impermeable to electrolyte solvent, has been developed to minimize CEI formation and structural damage. IL based on Li+ insulating ceramics, such as aluminum oxide (Al2O3), tin oxide (SnO2), and magnesium oxide (MgO), has been developed but to limited success in mitigating the above cathode degradation. The (open full item for complete abstract)
Committee: Dr. Jitendra Kumar (Committee Chair); Dr. Guru Subramanyam (Committee Member); Dr. Feng Ye (Committee Member); Dr. Vikram Kuppa (Committee Member)
Subjects: Electrical Engineering; Energy; Engineering