Master of Science (MS), Ohio University, 2017, Chemical Engineering (Engineering and Technology)
Iron carbonate (FeCO3) is the commonest corrosion product that forms on the surface of mild steel as a by-product of the CO2 corrosion process. This FeCO3 layer slows down further corrosion by acting as a diffusion barrier, blocking corrosive species from reaching the steel surface. However, high flow velocities, which can be common in various industrial operations, have been postulated either to lead to partial mechanical removal of FeCO3 layers or to impede the nucleation of FeCO3 crystals on the steel surface altogether.
In the experimental study described herein, corrosion product formation in highly turbulent conditions was investigated with surface analysis techniques. Experiments were divided in relation to three different sets of tasks focusing on high initial saturation values, low and constant saturation values, and high velocity experiments. The first set of experiments was performed in a three electrode glass cell and rotating cylinder setup and investigated the presence/attachment/adherence of FeCO3 on the steel surface in short term experiments with high initial saturation values (S(FeCO3) = 150). The aim was to study the precipitation of FeCO3 in conditions where the bulk solution has a high concentration of ferrous ions at continuous rotational speeds, from the start to the end of each experiment. It was found that as the fluid velocity increased, there was less attachment of FeCO3, with the highest velocity of 2.0 m/s (wall shear stress of 7 Pa) showing no FeCO3 formation/attachment on the metal surface.
The second task focused on controlling the pH and ferrous ion concentration in solution, in order to better mimic actual field conditions. Additionally, a controlled mass transfer setup was utilized that eliminated any non-uniformity of flow and centrifugal forces often associated with rotating cylinder working electrodes. In this set of experiments, four different materials and/or microstructures were tested, namely pure Fe (99.8%), UNS G101 (open full item for complete abstract)
Committee: Marc Singer (Advisor); Srdjan Nesic (Committee Member); Reza M. Toufiq (Committee Member); Craig Grimes (Committee Member)
Subjects: Chemical Engineering