Doctor of Philosophy, The Ohio State University, 2007, Chemical Engineering
In this work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers and a CO2/H2selectivity of 290 at 110°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to < 10 ppm. With such membranes, there are several options to reduce the CO concentration of synthesis gas. One option is to develop a water gas shift (WGS) membrane reactor, in which both WGS reaction and CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane followed by a conventional WGS reactor. In the membrane reactor, a CO concentration of less than 10 ppm and a H 2concentration of greater than 50% (on dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5% CO2 removed from the synthesis gas, the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for fuel cells. The WGS reactor had a gas hourly space velocity of 7650 h-1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. We studied the synthesized membranes at feed pressures > 200 psia and temperatures ranging from 100-150 °C. The effects of (open full item for complete abstract)
Committee: W.S. Winston Ho (Advisor)
Subjects: