Doctor of Philosophy, The Ohio State University, 2017, Chemistry
The purpose of this dissertation is to highlight three unique approaches towards discovering a catalytic treatment towards organophosphorus (OP) poisoning. All three potential approaches focus on developing catalytic treatment methods that focus on hydrolyzing OP nerve agents before they can inhibit acetylcholinesterase (AChE). AChE is a serine hydrolase which is responsible for hydrolyzing the neurotransmitter acetylcholine (ACh). AChE operates near diffusion control and can hydrolyze upwards of 25,000 ACh molecules every second. However, when AChE is inhibited by a nerve agent, an excess amount of ACh will build up at neurosynaptic gaps, thereby causing a cholinergic crisis. Once this occurs, a person will start to develop symptoms of muscle contractions, blurry vision, seizures and/or respiratory failure. An OP nerve agent has this effect because it is a structural analog to ACh; however, phosphylation of the active site is more difficult to reverse. Reactivation of AChE can occur by hydrolyzing the phosphylated enzyme with a nucleophile such as 2-PAM (often administered after OP exposure has occurred). Unfortunately, if this reactivation does not occur, the phosphylated enzyme will undergo a spontaneous dealkylation step (termed aging) to give a “dead” enzyme, which to date cannot be reactivated.
The first therapeutic design focuses on the research and development of phosphorane haptens. These haptens are conjugated to some mutagen and administered into mice. This causes an immune response and can generate catalytic antibodies which are capable of hydrolyzing the nerve agent VX. In total, ten different haptens were synthesized, mimicking the hydrolysis transition state of VX, and all generated specific antibodies. Each titer of antibodies were then tested against authentic VX samples.
The second approach focuses on the development of a combinatorial approach to synthesizing a random library of cyclic peptides. These cyclic peptides are meant to model the activ (open full item for complete abstract)
Committee: Christopher Hadad (Advisor); Jon Parquette (Committee Member); Psaras McGrier (Committee Member)
Subjects: Chemistry