Doctor of Philosophy (Ph.D.), Bowling Green State University, 2020, Biological Sciences
Many taxa suffer from habitat loss, spread of invasive species, and climate change; however, reptiles are especially vulnerable because they are constrained physiologically from their ectothermic nature in addition to global population declines. Like other taxa, reptilian basic ecology requirements are influenced by ecological neighborhoods, which shape the abundance of critical resources and their movement patterns. My goal was to better understand reptilian movement patterns across spatial and temporal scales to facilitate conservation efforts within Oak Openings Region (OOR), of northwestern Ohio and southeastern Michigan, using a combination of field surveys, remote sensing data and modeling. My research examined (1) climate change, (2) distribution patterns, (3) habitat use, and (4) movement patterns. At the regional scale, we found moderate increases in suitable habitat for box turtles within the future scenarios based on climatic suitability models. Individuals may be more displaced or vulnerable from temperature change during the driest quarter of the year. Dispersal is feasible; box turtles, based on tracking of individuals, can move large distances within their lifetime but the physical barriers, like roads, on the landscape may greatly hinder these movements. I modeled habitat suitability for a suite of reptiles based on occupancy data and climate, habitat, elevation, and structural features. Currently, suitable habitat was less than half the area within OOR and was more restricted for two species of concern. There is a need to examine the range of limitations, i.e., minimum and maximum models, when planning conservation efforts for a suite of species, especially emphasizing the protection of wet and dry forest. At the local scale, I found using radio telemetry that box turtles displayed typical average home range sizes; however, some were much larger than other studies. This is likely a difference in landscape heterogeneity where home range size increase (open full item for complete abstract)
Committee: Karen Root PhD (Advisor); Michael Decker PhD (Other); Kevin McCluney PhD (Committee Member); Helen Michaels PhD (Committee Member); Enrique Gomezdelcampo PhD (Committee Member)
Subjects: Biology; Conservation; Ecology