Doctor of Philosophy, The Ohio State University, 2009, Mechanical Engineering
Magnetostrictive materials have the ability to transfer energy between the magnetic and mechanical domains. They deform in response to magnetic fields and magnetize in response to stresses. Further, their stiffness and permeability depend on both magnetic field and stress. Galfenol, an alloy of iron and gallium, is an emerging magnetostrictive material which is unique for its combination of high magnetomechanical coupling and steel-like structural properties. Unique among smart materials, Galfenol can serve both as a structural element and as an actuator or sensor. This work presents nonlinear characterization and modeling of magnetization and strain of Galfenol, and a 3-D system-level model for Galfenol-based transducers.
Magnetomechanical measurements are presented which reveal that Galfenol constitutive behavior is kinematically reversible and thermodynamically irreversible. Magnetic hysteresis resulting from thermodynamic irreversibilities is shown to arise from a common mechanism for both magnetic field and stress application. Linear regions in constant-stress magnetization curves are identified as promising for force sensing applications. It is shown that the slope of these linear regions, or the magnetic susceptibility, is highly sensitive to stress. This observation can be used for force sensing; the 19-22 at. % Ga range is identified as a favorable Galfenol composition for sensing, due to its low anisotropy with moderate magnetostriction and saturation magnetization.
A thermodynamic framework is constructed to describe the magnetization and strain. An elementary hysteron, derived from the first and second laws, describes the underlying nonlinearities and hysteresis. Minimization of the energy of a single magnetic domain gives expressions for the hysteron states and accurately describes features of the constitutive behavior, including the stress dependence in the magnetization regions and the stress dependence of the location of the burst magnetization regio (open full item for complete abstract)
Committee: Marcelo Dapino PhD (Advisor); Joseph Heremans PhD (Committee Member); Ahmet Kahraman PhD (Committee Member); Menq Chia-Hsiang PhD (Committee Member)
Subjects: Engineering; Materials Science; Mechanical Engineering