Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 1)

Mini-Tools

 
 

Search Report

  • 1. Ramirez, Norma Cryptosporidium studies: maintenance of stable populations through in vivo propagation and molecular detection strategies

    Doctor of Philosophy, The Ohio State University, 2005, Veterinary Preventive Medicine

    Cryptosporidiosis, an infection caused by several genotypically and phenotypically diverse Cryptosporidium species, is a serious enteric disease of animals and humans worldwide. The current understanding of cryptosporidiosis, transmission, diagnosis, treatment and prevention measures for this disease is discussed. Contaminated water represents the major source of Cryptosporidium infections for humans. Manure from cattle can be a major source of Cryptosporidium oocysts. Oocysts transport to surface water can occur through direct fecal contamination, surface transport from land-applied manure or leaching through the soil to groundwater. Identification of Cryptosporidium species and genotypes facilitates determining the origin of the oocysts and to recognize sources of infection in outbreak situations and the risk factors associated with transmission. Very few studies have applied isolation methods to field samples because of difficulties with detection of oocysts in environmental samples. The objective of this study was to develop an easy method that can be applied to field samples to rapidly detect the presence of Cryptosporidium oocysts and identify their species. A molecular detection system that included an oocyst recovery method combined with spin column DNA extraction, followed by PCR-hybridization for detection and a Real-Time PCR-melting curve analysis for species assignment. Due to its versatility and capability of rapid high-throughput analysis of multiple targets, an oligonucleotide microarray was also designed to identify Cryptosporidium parasites and discriminate between species. The detection assay was then used to assess Cryptosporidium contamination in swine and poultry samples and to study the transport of Cryptosporidium oocysts through disturbed (tilled) and non-disturbed (no-till) soil during simulated rainfall. The results of the study demonstrated the potential of the assay for the detection of the parasite in environmental samples. In vitro cult (open full item for complete abstract)

    Committee: Srinand Sreevatsan (Advisor) Subjects: