Master of Science (MS), Ohio University, 2020, Geography (Arts and Sciences)
Landscape regions and hydrological features such as wetlands, rivers, and lakes are frequently mapped and stored digitally as features. Their boundary can be mapped and identified at the physically observable wetland-dryland interface. However, landforms such as mountains, hills, mesas, valleys, which are cognized as component features of or objects attached to the terrestrial surface are not easily delineated due to the lack of clear or unambiguous criteria for defining their boundaries. It is quite challenging to determine where the boundary of the mountain, hill, or valley starts and ends because terrain type, culture, language, and other subjective factors greatly affect how the same portion of the terrestrial surface maybe discretized, classified, labeled, and characterized by people. Cartographers have traditionally used point and line symbols as labels to describe landforms in a map, but this approach ignores the problem of representing the possible physical shape and extension of landforms. This thesis advanced prior work in the fields of geomorphometry and geographic information science to test the viability of existing semi-automated terrain analysis methods for mesoscale landforms that are easily recognized by people because of local topographic and cultural salience. The focus was on finding methods that can help automate the extraction of three broad categories of landforms: non-linear eminences (e.g., peak, mount, pillar, mountain, hill, mesa, butte), linear eminences (e.g., ridge and spur) and linear depressions (e.g., channel, valley, and hollow). Three methods proposed by Wood (1996), Jasiewicz and Stepinski (2013), and Weiss (2001) were selected because they are popular in terrain characterization, have shown promising results for mapping discrete terrain features that are intended to resemble landforms recognized intuitively by people, and because they are easily available for experimentation in freely available software. These methods require onl (open full item for complete abstract)
Committee: Gaurav Sinha Associate Professor (Committee Chair); Dorothy Sack Professor (Committee Member); Timothy Anderson Associate Professor (Committee Member)
Subjects: Geography