PhD, University of Cincinnati, 2024, Engineering and Applied Science: Mechanical Engineering
One of the largest sources of uncertainty in the calculation of stopping power ratios for use in proton radiotherapy is the measurement of Hounsfield Units (HU) for the determination of electron density. The primary source of this uncertainty is due to the relative difference in scatter between the patient and electron density calibration phantoms. In this dissertation, I will show how anatomy adaptive CT number to electron density calibration curves can improve the accuracy of stopping power ratio tabulations for proton radiation therapy dosimetry. We will generate new curves by measuring realistic (anthropomorphic) phantoms, fabricated using realistic tissue equivalent materials that accurately represent the internal structure and tissue types of the pelvis. The goal of this research is to use the new realistic anthropomorphic phantoms to evaluate how patient scatter affects measured electron density curves.
Committee: Henry Spitz Ph.D. (Committee Chair); Jay Kim Ph.D. (Committee Member); Michael Lamba Ph.D. (Committee Member); Bruce Mahoney (Committee Member); Peter Sandwall Ph.D M.A B.A. (Committee Member); Michael Alexander-Ramos Ph.D. (Committee Member); Sam Glover Ph.D. (Committee Member)
Subjects: Nuclear Physics