Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 3)

Mini-Tools

 
 

Search Report

  • 1. Bandukwala, Mustafa Viability of Power-Split Hybrid-Electric Aircraft under Robust Control Co-Design

    MS, University of Cincinnati, 2021, Engineering and Applied Science: Mechanical Engineering

    The increase in the usage of Unmanned Aerial Vehicles or UAVs for surveillance, aid and other purposes has compounded the detrimental impact of the aviation industry on the environment. To counter its increasing contribution to the climate crisis, the industry needs timely energy efficient solutions. Combined optimal design and control study or co-design aims to lower the energy consumption of UAVs through various propulsion systems, one of them being a power-split hybrid model. However, this approach is limited in its consideration of uncertain losses or changes in these systems. In this thesis, we address these uncertain parameters of a Group 5 UAV using a power-split Hybrid Electric Propulsion System (HEPS) architecture. We will be investigating several random variations which such an aircraft could encounter during its flight. The thesis explores the outcome of the application of a stochastic dynamic optimization technique, called Robust-Multidisciplinary Dynamic System Design Optimization (R-MDSDO), to the power split HEPS architecture. This helps to ascertain the optimal value of design, state trajectories and control trajectories to minimize the energy utilized by the Group 5 UAV. The end result, which is achieved through a comparison of the robust and deterministic solution, indicates that accounting for system uncertainties has a significant impact on the power-split HEPS design.

    Committee: Michael Alexander-Ramos Ph.D. (Committee Chair); Manish Kumar (Committee Member); Ahmed Elgafy Ph.D. (Committee Member) Subjects: Aerospace Materials
  • 2. Dinca, Dragos Development of an Integrated High Energy Density Capture and Storage System for Ultrafast Supply/Extended Energy Consumption Applications

    Doctor of Engineering, Cleveland State University, 2017, Washkewicz College of Engineering

    High Intensity Laser Power Beaming is a wireless power transmission technology developed at the Industrial Space Systems Laboratory from 2005 through 2010, in collaboration with the Air Force Research Laboratory to enable remote optical `refueling' of airborne electric micro unmanned air vehicles. Continuous tracking of these air vehicles with high intensity lasers while in-flight for tens of minutes to recharge the on-board battery system is not operationally practical; hence the recharge time must be minimized. This dissertation presents the development and system design optimization of a hybrid electrical energy storage system as a solution to this practical limitation. The solution is based on the development of a high energy density integrated system to capture and store pulsed energy. The system makes use of ultracapacitors to capture the energy at rapid charge rates, while lithium-ion batteries provide the long-term energy density, in order to maximize the duration of operations and minimize the mass requirements. A design tool employing a genetic algorithm global optimizer was developed to select the front-end ultracapacitor elements. The simulation model and results demonstrate the feasibility of the solution. The hybrid energy storage system is also optimized at the system-level for maximum end-to-end power transfer efficiency. System response optimization results and corresponding sensitivity analysis results are presented. Lastly, the ultrafast supply/extended energy storage system is generalized for other applications such as high-power commercial, industrial, and aerospace applications.

    Committee: Hanz Richter Ph.D. (Committee Chair); Taysir Nayfeh Ph.D. (Committee Member); Lili Dong Ph.D. (Committee Member); Majid Rashidi Ph.D. (Committee Member); Petru Fodor Ph.D. (Committee Member) Subjects: Electrical Engineering
  • 3. Brezina, Aron Measurement of Static and Dynamic Performance Characteristics of Electric Propulsion Systems

    Master of Science in Engineering (MSEgr), Wright State University, 2012, Mechanical Engineering

    Today's unmanned aerial vehicles are being utilized by numerous groups around the world for various missions. Most of the smaller vehicles that have been developed use commercially-off-the-shelf parts, and little information about the performance characteristics of the propulsion systems is available in the archival literature. In light of this, the aim of the present research was to determine the performance of various small-scale propellers in the 4.0 to 6.0 inch diameter range driven by an electric motor. An experimental test stand was designed and constructed in which the propeller/electric motor was mounted in a wind tunnel for both static and dynamic testing. Both static and dynamic results from the present experiment were compared to those from previous studies. For static testing, the coefficient of thrust, the coefficient of propeller power, and the overall efficiency, defined as the ratio of the propeller output power to the electrical input power, were plotted versus the propeller rotational speed. For dynamic testing, the rotational speed of the propeller was held constant at regular intervals while the freestream airspeed was increased from zero to the windmill state. The coefficient of thrust, the coefficient of power, the propeller efficiency and the overall efficiency were plotted versus the advance ratio for various rotational speeds. The thrust and torque were found to increase with rotational speed, propeller pitch and diameter, and decrease with airspeed. Using the present data and data from the archival and non-archival sources, it was found that the coefficient of thrust increases with propeller diameter for square propellers where D = P. The coefficient of thrust for a family of propellers (same manufacturer and application) was found to have a good correlation from static conditions to the windmill state. While the propeller efficiency was well correlated for this family of propellers, the goodness of fit parameter was improved by modifying t (open full item for complete abstract)

    Committee: Scott K. Thomas PhD (Committee Chair); Haibo Dong PhD (Committee Member); Zifeng Yang PhD (Committee Member); Mitch Wolff PhD (Committee Member) Subjects: Aerospace Engineering; Engineering; Mechanical Engineering