PHD, Kent State University, 2022, College of Arts and Sciences / Department of Physics
Over the past few decades, there has been tremendous development on soft materials in soft robotics, energy generation and sensing applications. These soft materials are mostly polymers. Their compliant elasticity, good adaptability to external constraints, and biocompatibility make them suitable for those applications. Further, polymers that respond by changing their shape or size to an external stimulus such as electric field, magnetic field, heat, pressure, pH, and light have great potential for these applications. Among these stimuli responsive materials, electro responsive polymers (electroactive polymers (EAPs)) acquires great attention.
Organic electrochemical transistors (OECTs) have attracted great attention since their discovery in 1984 due to their flexibility, biocompatibility, easy fabrication and tunability through synthetic chemistry. As OECTs conduct both electronic and ionic charge, they are suitable for bioelectronic applications, such as recording electric activity of cells and tissues, detection of ions, metabolites, antigens related with various diseases, hormones, DNA, enzymes and neurotransmitter.
In my dissertation, I will describe how we developed ionic electroactive polymers (iEAPs) and ionic liquid crystal elastomers (iLCEs) for the applications of soft robotics, energy harvesting (flexo-ionic effect), sensing and organic electrochemical transistors.
Firstly, we engineered poly (ethylene glycol) diacrylate based iEAPs for soft robotics application. Here, low voltage induced bending (converse flexoelectricity) of crosslinked poly (ethylene glycol) diacrylate (PEGDA), modified with thiosi-loxane (TS) and ionic liquid (1-hexyl-3-methylimidazolium hexafluorophos-phate) (IL) is studied. In between 2μm PEDOT:PSS electrodes at 1 V, it provides durable (95% retention under 5000 cycles) and relatively fast (2 s switching time) actuation with the second largest strain observed so far in iEAPs. In between 40 nm gold electrodes under 8 V DC volt (open full item for complete abstract)
Committee: Antal Jákli (Advisor); Björn Lüssem (Committee Member); Songping Huang (Committee Member); John West (Committee Member); Robin Selinger (Committee Member)
Subjects: Physics