Doctor of Philosophy, The Ohio State University, 2022, Electrical and Computer Engineering
This dissertation addresses two separate engineering challenges: image-inverse problems and novelty detection.
First, we address image-inverse problems. We review Plug-and-Play (PnP) algorithms, where a proximal operator is replaced by a call of an arbitrary denoising algorithm. We apply PnP algorithms to compressive Magnetic Resonance Imaging (MRI). MRI is a non-invasive diagnostic tool that provides excellent soft-tissue contrast without the use of ionizing radiation. However, when compared to other clinical imaging modalities (e.g., CT or ultrasound), the data acquisition process for MRI is inherently slow, which motivates undersampling and thus drives the need for ac- curate, efficient reconstruction methods from undersampled datasets. We apply the PnP-ADMM algorithm to cardiac MRI and knee MRI data. For these algorithms, we developed learned denoisers that can process complex-valued MRI images. Our algorithms achieve state-of-the-art performance on both the cardiac and knee datasets.
Regularization by Denoising (RED), as proposed by Romano, Elad, and Milanfar, is a powerful image-recovery framework that aims to minimize an explicit regular- ization objective constructed from a plug-in image-denoising function. Experimental evidence suggests that RED algorithms are state-of-the-art. We claim, however, that explicit regularization does not explain the RED algorithms. In particular, we show that many of the expressions in the paper by Romano et al. hold only when the denoiser has a symmetric Jacobian, and we demonstrate that such symmetry does not occur with practical denoisers such as non-local means, BM3D, TNRD, and DnCNN. To explain the RED algorithms, we propose a new framework called Score-Matching by Denoising (SMD), which aims to match a “score” (i.e., the gradient of a log-prior).
Novelty detection is the ability for a machine learning system to detect signals that are significantly different from samples seen during training. Detecting novelties is (open full item for complete abstract)
Committee: Philip Schniter (Advisor); Rizwan Ahmad (Committee Member); Lee Potter (Committee Member)
Subjects: Electrical Engineering