Master of Science, University of Akron, 2005, Civil Engineering
There is a pressing need to develop effective techniques for structural health monitoring (SHM), so that the safety and integrity of the structures can be improved. The main objective of this study is to evaluate the dynamics-based damage detection techniques for the plate-type structures using smart piezoelectric materials and modern instrumentation like Scanning Laser Vibrometer (SLV). The study comprises of testing an E-glass/epoxy composite plate with an embedded delamination and an aluminum plate with a saw-cut crack using two different actuator-sensor systems: (1) SLV with PZT (lead-zirconate-titanate) actuators (PZT-SLV), and (2) Polyvinylidenefluoride (PVDF) sensors with PZT actuators (PZT-PVDF). The numerical finite element (FE) analysis is also performed to complement the damage detection. Three relatively new damage detection algorithms (i.e., Simplified Gapped Smoothing Method (GSM), Generalized Fractal Dimension (GFD), and Strain Energy Method (SEM)) are employed to analyze the experimental and numerical mode shape data and Uniform Load Surface (ULS). From the damage detection outcomes, it is observed that the PZT-SLV system proves to be more convenient and effective, and it is capable of scanning a large number of points over the entire plate specimens; while the PZT-PVDF system, in which the curvature mode shapes are directly acquired, exhibits good sensitivity to damage. The damage detection algorithms like the GSM, GFD and SEM based on the utilization of three consecutive mode curvatures (modes 3 to 5) and resulting ULS curvature successfully identify the presence and location of delamination in the composite plate; however, they do not show much success in locating the saw-cut crack in the aluminum plate with the same mode curvatures. Using the transverse bending dominated modes (e.g., modes 6 and 12), the above damage detection algorithms are capable of locating the saw-cut crack in the aluminum plate. Due to refined analysis of FE approach, all t (open full item for complete abstract)
Committee: Pizhong Qiao (Advisor)
Subjects: