Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 44)

Mini-Tools

 
 

Search Report

  • 1. Wogsland, Brittan Organomineralization of Microbialites from Storr's Lake, San Salvador Island, Bahamas: Calcium Stable Isotope Analysis using TIMS and a 42Ca-43Ca double spike

    Master of Science, The Ohio State University, 2020, Earth Sciences

    The isotopic composition and mineralogy of modern microbialites provides us with tools useful for interpreting the formation processes and environments of ancient microbialites. Growing in the hypersaline and turbid Storr's Lake on San Salvador Island in The Bahamas today are microbialites with low levels of photosynthesis and high levels of sulfate reduction-in contrast to many of their modern counterparts. Living planktonic, motile microorganisms and suspended algal and bacterial debris create the high turbidity of the shallow lake (<2 m) and rapidly attenuate sunlight in the water column. Within Storr's Lake microbial metabolisms induce precipitation of carbonate within microenvironments of the microbial mats. Both high-Mg calcite (HMC) and aragonite are found within a majority of the microbialites measured leading to the hypothesis that the organomineralization process involves a step where HMC transforms to aragonite. Mineralogy and elemental analysis of a wide sampling of microbialites was undertaken to understand the extent of aragonite within Storr's Lake microbialites. It was found that aragonite occurs at water depths greater than 40 cm within the lake and was present in all but one microbialite measured in this study. New calcium (Ca) stable isotopic analyses from the thermal ionization mass spectrometer using a 42Ca-43Ca double spike provides evidence for exploring the systems fractionating Ca within Storr's Lake water and microbialites. In contrast to geochemical data and previous Mg stable isotopic measurements on the same waters, the Ca stable isotopic value (δ44/40Ca) of water in Storr's Lake is not homogeneous. While the northern sector is primarily influenced by seawater, the southern sector δ44/40Ca is shifted away from seawater to lower values, suggesting internal variability within the lake. In both microbialites measured, δ44/40Ca is strongly correlated to mineralogy and trace elements in the carbonate. To explore the potenti (open full item for complete abstract)

    Committee: Elizabeth Griffith PhD (Advisor); Matthew Saltzman PhD (Committee Member); Thomas Darrah PhD (Committee Member) Subjects: Biogeochemistry; Earth; Geobiology; Geochemistry; Geological; Geology; Morphology; Petroleum Geology