Doctor of Philosophy (Ph.D.), University of Dayton, 2024, Computer Science
Image is used everywhere since it conveys a story, a fact, or an imagination without any words. Thus, it can substitute the sentences because the human brain can extract the knowledge from images faster than words. However, creating an image from scratch is not only time-consuming, but also a tedious task that requires skills. Creating an image is not a trivial task since it contains rich features and fine-grained details, such as colors, brightness, saturation, luminance, texture, shadow, and so on. Thus, in order to generate an image in less time and without any artistic skills, sketch-to-image synthesis can be used. The reason is that hand sketches are much easier to produce, where only the key structural information is contained. Moreover, it can be drawn without skills and in less time. In fact, since sketches are often simple and rough black and white and sometimes imperfect, converting a sketch into an image is not a trivial problem. Hence, it has attracted the researchers' attention to solve this challenging problem; therefore, much research has been conducted in this field to generate photorealistic images. However, the generated images still suffer from issues, such as the un-naturality, the ambiguity, the distortion, and most importantly, the difficulty in generating images from complex input with multiple objects. Most of these problems are due to converting a sketch into an image directly in one-shot. To this end, in this dissertation, we propose a new framework that divides the problem into sub-problems, leading to generating high-quality photorealistic images even with complicated sketches. Instead of directly mapping the input sketch into an image, we map the sketch into an intermediate result, namely, mask map, through an instance segmentation and semantic segmentation in two levels: background segmentation and foreground segmentation. Background segmentation is formed based on the context of the existing foreground objects. Various natural scenes a (open full item for complete abstract)
Committee: Tam Nguyen (Committee Chair); James Buckley (Committee Member); Luan Nguyen (Committee Member); Ju Shen (Committee Member)
Subjects: Artificial Intelligence; Computer Science