Skip to Main Content

Basic Search

Skip to Search Results
 
 
 

Left Column

Filters

Right Column

Search Results

Search Results

(Total results 1)

Mini-Tools

 
 

Search Report

  • 1. Kameel, Fathima Optical Properties and Chemical Composition of Secondary Organic Aerosol

    MS, Kent State University, 2009, College of Arts and Sciences / Department of Chemistry

    Aerosol particles (APs) affect the Earth's energy balance directly by absorbing and scattering radiation, and indirectly by altering the reflectance and persistence of clouds. Both parameters are determined by the chemical composition, size and shape of APs. APs consist of complex organic and inorganic mixtures, which include black carbon/soot as well secondary organic matter (SOM) proceeding from the gas-phase. SOM, also known as humic-like substances (HULIS), plays a key role in determining the optical properties of APs due to its ability to absorb radiation in the visible region of the solar spectrum. The chemical characterization of SOM is a daunting task that involves comprehensive chemical analysis, largely via chromatography/high-resolution mass spectrometry (HRMS), one of the most powerful analytical techniques available. However, optical properties are associated with chromophores within specific chemical structures, rather than with molecular formulas. Simpler mixtures can mimic the optical properties of secondary organic aerosol (SOA). Optical properties of mixtures are not linear combinations of the optical properties of its components. Furthermore, optical properties are not intrinsic to APs, but depend on external parameters, such as insolation and relative humidity. Therefore full speciation is neither a necessary nor sufficient condition for characterizing the optical properties of SOA.

    Committee: Shan-Hu Lee Prof (Advisor); Michael Hoffmann Prof (Other); Mietek Jaroniec Prof (Committee Member); Alexander Seed Prof (Committee Member) Subjects: Atmosphere; Chemistry