Master of Science, The Ohio State University, 2024, Food, Agricultural and Biological Engineering
Waste coal in abandoned mine lands poses significant environmental challenges, affecting nearby communities, rivers, and streams. Effective management of these piles is essential due to concerns such as acid mine drainage, soil and water contamination, coal fires, and methane emissions. Various strategies have been proposed for managing waste coal, including potential utilization for rare earth element recovery, soil amendment, construction aggregates, and energy generation. However, the implementation of these strategies remains uncertain due to the lack of precise location and volume data on waste coal piles. Traditional methods for gathering these data rely on field visits and Global Navigation Satellite System surveying, which are costly and labor-intensive. Advances in satellite technologies and the availability of digital elevation models (DEMs) offer an opportunity to estimate waste coal volume on a regional scale in a timely and cost-effective manner. Thus, the objective of this thesis was to develop a robust data analytical framework to locate and estimate the volume of waste coal piles on a regional scale, using the Muskingum River Basin (MRB) in Ohio as the study area.
Initially, a prototype was developed to determine the most effective machine learning (ML) model to map waste coal piles in a historical coal mine site within the MRB. While all four ML models effectively identified dominant classes such as Grassland and Forest, the Random Forest (RF) model demonstrated superior performance in classifying the more complex waste coal class, with a precision of 86.15% and recall of 76.71%. Subsequently, the greatest disturbance and reclamation mapping of these waste coal piles were conducted using the LandTrendr algorithm to distinguish waste coal piles in abandoned mine lands from those in active mining areas.
Moreover, this study utilized publicly available elevation models to estimate waste coal volume in the MRB. However, since historical terrain mo (open full item for complete abstract)
Committee: Ajay Shah (Advisor); Sami Khanal (Advisor); Tarunjit Singh Butalia (Committee Member)
Subjects: Artificial Intelligence; Engineering; Geographic Information Science; Remote Sensing; Sustainability