Skip to Main Content
Frequently Asked Questions
Submit an ETD
Global Search Box
Need Help?
Keyword Search
Participating Institutions
Advanced Search
School Logo
Files
File List
Master_Thesis_Lakshika_final.pdf (2.57 MB)
ETD Abstract Container
Abstract Header
Finding Street Gang Member Profiles on Twitter
Author Info
Balasuriya, Lakshika
ORCID® Identifier
http://orcid.org/0000-0002-2884-4032
Permalink:
http://rave.ohiolink.edu/etdc/view?acc_num=wright1516054679956178
Abstract Details
Year and Degree
2017, Master of Science (MS), Wright State University, Computer Science.
Abstract
The crime and violence street gangs introduce into neighborhoods is a growing epidemic in cities around the world. Today, over 1.4 million people, belonging to more than 33,000 gangs, are active in the United States, of which 88% identify themselves as being members of a street gang. With the recent popularity of social media, street gang members have established online presences coinciding with their physical occupation of neighborhoods. Recent studies report that approximately 45% of gang members participate in online offending activities such as threatening, harassing individuals, posting violent videos or attacking someone on the street for something they said online in social media platforms. Thus, their social media posts may be useful to social workers and law enforcement agencies to discover clues about recent crimes or to anticipate ones that may occur in a community. Finding these posts, however, requires a method to discover gang member social media profiles. This is a challenging task since gang members represent a very small population compared to the active social media user base. This thesis studies the problem of automatically identifying street gang member profiles on Twitter, which is a popular social media platform that is commonly used by street gang members to promote their online gang-related activities. It outlines a process to curate one of the largest sets of verifiable gang member Twitter profiles that have ever been studied. A review of these profiles establishes differences in the language, profile and cover images, YouTube links, and emoji shared on Twitter by gang members compared to the rest of the Twitter population. Beyond the earlier efforts in Twitter profile identification that utilize features derived from the profile and tweet text, this thesis uses additional heterogeneous sets of features from the emoji usage, profile images, and links to YouTube videos reflecting gang-related music culture towards solving the gang member profile identification problem. Features from this review are used to train a series of supervised machine learning classifiers and they are further improved upon by using word embeddings learned over a large corpus of tweets. Experimental results demonstrate that heterogeneous features enabled our classifiers to achieve low false positive rates and promising F 1-scores.
Committee
Amit Sheth, Ph.D. (Committee Co-Chair)
Derek Doran, Ph.D. (Committee Co-Chair)
Krishnaprasad Thirunarayan, Ph.D. (Committee Member)
Pages
67 p.
Subject Headings
Computer Science
Keywords
Street Gangs
;
Twitter Profile Identification
;
Gang Activity Understanding
;
Social Media Analysis
;
Word Embeddings
;
Street Gangs on Twitter
Recommended Citations
Refworks
EndNote
RIS
Mendeley
Citations
Balasuriya, L. (2017).
Finding Street Gang Member Profiles on Twitter
[Master's thesis, Wright State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=wright1516054679956178
APA Style (7th edition)
Balasuriya, Lakshika.
Finding Street Gang Member Profiles on Twitter.
2017. Wright State University, Master's thesis.
OhioLINK Electronic Theses and Dissertations Center
, http://rave.ohiolink.edu/etdc/view?acc_num=wright1516054679956178.
MLA Style (8th edition)
Balasuriya, Lakshika. "Finding Street Gang Member Profiles on Twitter." Master's thesis, Wright State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1516054679956178
Chicago Manual of Style (17th edition)
Abstract Footer
Document number:
wright1516054679956178
Download Count:
1,220
Copyright Info
© 2017, some rights reserved.
Finding Street Gang Member Profiles on Twitter by Lakshika Balasuriya is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Based on a work at etd.ohiolink.edu.
This open access ETD is published by Wright State University and OhioLINK.