Skip to Main Content
Frequently Asked Questions
Submit an ETD
Global Search Box
Need Help?
Keyword Search
Participating Institutions
Advanced Search
School Logo
Files
File List
9125.pdf (18.76 MB)
ETD Abstract Container
Abstract Header
Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits
Author Info
Srinivasan, Raghuram
Permalink:
http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531763
Abstract Details
Year and Degree
2014, PhD, University of Cincinnati, Engineering and Applied Science: Computer Science and Engineering.
Abstract
Circuit simulation is an integral parts of the VLSI design process. Complex models have been developed to mimic the various phenomena that occur at the physical level; sophisticated numerical methods have also been simultaneously designed to handle the complexity of the mathematical models. As a result, large realistic models can be simulated accurately and efficiently. The SPICE simulation tool, with an extensive model library and extremely optimized numerical methods, is the current industry standard for circuit simulation. Recently though, due to the rapid reduction in feature sizes, values assumed for some of the parameters within the model during the design phase cannot be reproduced exactly during the fabrication phase. These aleatoric uncertainties in the model parameters induce non-determinism in the rest of the system variables. This has transformed the traditional circuit simulation problem into one of Statistical Performance Estimation (SPE). Statistical distributions are used to represent parameters and Monte Carlo (MC) type methods are used for analysis. While this approach is robust and easy to implement, it suffers from long analysis times due to its repetitive nature and, more importantly, the curse of dimensionality. The focus of this dissertation is to develop MC alternate methods for SPE: at the top level, we have developed two different methodologies using (a) interval arithmetic and (b) polynomial chaos expansions, with which we have developed intrusive methods to generate a system of equations that amenable to efficient SPE. The first approach uses interval valued variables to represent the uncertainties. Interval arithmetic follows special computation rules which allows for guaranteed enclosures to be produced. Since the computations are inherently pessimistic and prone to interval blowup, some transformations are necessary to contain these effects. We present a graph theoretic method to transform the DAE modeling the circuit into an ODE. We then use Taylor series expansion to produce a time marching method, this results in reliable guaranteed enclosures without repetitive runs of the deterministic simulation engine. Interval arithmetic, however, is incapable of producing statistical distributions which a MC type analysis can provide. In our second approach, we use polynomial chaos expansions to represent the the inherent and induced uncertainties in the system of equations. Galerkin conditions are used to project system to a finite dimensional basis gives us an extended deterministic DAE, the solution of which allows reintroduction of nondeterminism at a much cheaper cost. While such methods have been been developed for ODEs and PDEs, we have extended the theory to be able to analyze DAEs. In particular, we have shown that an extended form of MNA exists which allows for automatic equation extraction, and that the DAE index does not increase in the extended system. Finally, we have shown that nonlinear terms can also be accommodated in the method through sub-expansions. Experimental results show that the methods is accurate and efficient as compared to the MC method, and is also more immune to the curse of dimensionality.
Committee
Fred Beyette, Ph.D. (Committee Chair)
Harold Carter, Ph.D. (Committee Member)
Wen Ben Jone, Ph.D. (Committee Member)
Joy Moore, Ph.D. (Committee Member)
Carla Purdy, Ph.D. (Committee Member)
Ranganadha Vemuri, Ph.D. (Committee Member)
Pages
172 p.
Subject Headings
Engineering
Keywords
VLSI
;
Circuit Simulation
;
Numerical Methods
;
Monte Carlo
Recommended Citations
Refworks
EndNote
RIS
Mendeley
Citations
Srinivasan, R. (2014).
Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits
[Doctoral dissertation, University of Cincinnati]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531763
APA Style (7th edition)
Srinivasan, Raghuram.
Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits.
2014. University of Cincinnati, Doctoral dissertation.
OhioLINK Electronic Theses and Dissertations Center
, http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531763.
MLA Style (8th edition)
Srinivasan, Raghuram. "Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits." Doctoral dissertation, University of Cincinnati, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396531763
Chicago Manual of Style (17th edition)
Abstract Footer
Document number:
ucin1396531763
Download Count:
386
Copyright Info
© 2014, some rights reserved.
Monte Carlo Alternate Approaches to Statistical Performance Estimation in VLSI Circuits by Raghuram Srinivasan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Based on a work at etd.ohiolink.edu.
This open access ETD is published by University of Cincinnati and OhioLINK.