Skip to Main Content
Frequently Asked Questions
Submit an ETD
Global Search Box
Need Help?
Keyword Search
Participating Institutions
Advanced Search
School Logo
Files
File List
Almabrok_Dissertation__final format aproved LW 7-18-17.pdf (2.89 MB)
ETD Abstract Container
Abstract Header
High Order Volumetric Directional Pattern for Robust Face Recognition
Author Info
Essa, Almabrok Essa
ORCID® Identifier
http://orcid.org/0000-0002-2180-9699
Permalink:
http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500901918995427
Abstract Details
Year and Degree
2017, Doctor of Philosophy (Ph.D.), University of Dayton, Electrical and Computer Engineering.
Abstract
The texture of objects in digital images is an important property that has been utilized in many computer vision and image analysis applications, such as pattern recognition, object classification, and region segmentation. Despite its frequent usage and many attempts to describe it in general terms, the texture lacks a precise definition. This makes the development of new texture descriptors a big challenge. In addition, researchers interest has recently spread into the dynamic texture (video domain), where the problem becomes more challenging. The main goal of feature description and representation techniques is to extract features from the image that are distinct and stable under different conditions during the image acquisition process. Texture descriptors can be generally classified into structural and statistical approaches. The structural methods consider the texture as a repetition of some primitives, with a specific rule of placement, while the statistical techniques characterize the stochastic properties of the spatial distribution of gray levels in an image using the gray tone co-occurrence matrix. In this work, we propose a combination of the structural and statistical approaches that can be utilized to recognize a variety of different textures, named High Order Local Directional Pattern (HOLDP) for still image based feature extraction (static texture) as well as High Order Volumetric Directional Pattern (HOVDP) for video based feature extraction (dynamic texture). Recently, the conventional Local Directional Pattern (LDP) has received a great deal of attention in face recognition applications. However, it only describes the micro structures of the texture images because it considers only a small neighborhood size. In fact, our proposed HOLDP descriptor can capture more detailed discriminative information by not only extracting the micro structures but also the macro structures of the texture images, which can be done by the help of a pyramidal multi-structure approach. The pyramid based multi-structure presented in this dissertation research can be created by encoding the directional information from different neighborhood layers of the image for each pixel position, and then concatenating the feature vectors of each neighborhood layer to form the final HOLDP feature map. Identifying human faces in video is a challenging problem due to the presence of large variations in facial pose and expression, as well as poor video resolution. To address this, Volumetric Directional Pattern (VDP) is proposed [1]. VDP is an oriented volumetric descriptor that is able to extract and fuse the information of multiple frames, temporal (dynamic) information, and multiple poses and expressions of faces in input videos to produce strong feature vectors. Meanwhile, to demonstrate the generality and capability of the HOLDP method, we develop another novel video based feature extraction technique, namely High Order Volumetric Directional Pattern (HOVDP) as an extension of VDP. HOVDP combines the movement and appearance features together by considering the nth order directional variation patterns of all neighboring pixel layers from three consecutive frames. From extensive experiments on still image based and video based face recognition benchmarks, we demonstrate the excellent performance of our proposed techniques compared to the state-of-the-art approaches.
Committee
Vijayan Asari (Advisor)
Russell Hardie (Committee Member)
Eric Balster (Committee Member)
Youssef Raffoul (Committee Member)
Pages
75 p.
Subject Headings
Electrical Engineering
;
Engineering
Keywords
Face recognition
;
high order local directional pattern
;
volumetric directional pattern
;
high order volumetric directional pattern
Recommended Citations
Refworks
EndNote
RIS
Mendeley
Citations
Essa, A. E. (2017).
High Order Volumetric Directional Pattern for Robust Face Recognition
[Doctoral dissertation, University of Dayton]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500901918995427
APA Style (7th edition)
Essa, Almabrok.
High Order Volumetric Directional Pattern for Robust Face Recognition.
2017. University of Dayton, Doctoral dissertation.
OhioLINK Electronic Theses and Dissertations Center
, http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500901918995427.
MLA Style (8th edition)
Essa, Almabrok. "High Order Volumetric Directional Pattern for Robust Face Recognition." Doctoral dissertation, University of Dayton, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500901918995427
Chicago Manual of Style (17th edition)
Abstract Footer
Document number:
dayton1500901918995427
Download Count:
599
Copyright Info
© 2017, all rights reserved.
This open access ETD is published by University of Dayton and OhioLINK.