Skip to Main Content
Frequently Asked Questions
Submit an ETD
Global Search Box
Need Help?
Keyword Search
Participating Institutions
Advanced Search
School Logo
Files
File List
DISSERTATION_DELASCASAS.pdf (18.22 MB)
ETD Abstract Container
Abstract Header
Model-Free Optimization of Trajectory and Impedance Parameters on Exercise Robots with Applications to Human Performance and Rehabilitation
Author Info
De las Casas Zolezzi, Humberto Jose
Permalink:
http://rave.ohiolink.edu/etdc/view?acc_num=csu1625490714196286
Abstract Details
Year and Degree
2021, Doctor of Philosophy in Engineering, Cleveland State University, Washkewicz College of Engineering.
Abstract
This dissertation focuses on the study and optimization of human training and its physiological effects through the use of advanced exercise machines (AEMs). These machines provide an invaluable contribution to advanced training by combining exercise physiology with technology. Unlike conventional exercise machines (CEMs), AEMs provide controllable trajectories and impedances by using electric motors and control systems. Therefore, they can produce various patterns even in the absence of gravity. Moreover, the ability of the AEMs to target multiple physiological systems makes them the best available option to improve human performance and rehabilitation. During the early stage of the research, the physiological effects produced under training by the manual regulation of the trajectory and impedance parameters of the AEMs were studied. Human dynamics appear as not only complex but also unique and time-varying due to the particular features of each person such as its musculoskeletal distribution, level of fatigue, fitness condition, hydration, etc. However, the possibility of the optimization of the AEM training parameters by using physiological effects was likely, thus the optimization objective started to be formulated. Some previous research suggests that a model-based optimization of advanced training is complicated for real-time environments as a consequence of the high level of complexity, computational cost, and especially the many unidentifiable parameters. Moreover, a model-based method differs from person to person and it would require periodic updates based on physical and psychological variations in the user. Consequently, we aimed to develop a model-free optimization framework based on the use of Extremum Seeking Control (ESC). ESC is a non-model based controller for real-time optimization which its main advantage over similar controllers is its ability to deal with unknown plants. This framework uses a physiological effect of training as bio-feedback. Three different frameworks were performed for single-variable and multi-variable optimization of trajectory and impedance parameters. Based on the framework, the objective is achieved by seeking the optimal trajectory and/or impedance parameters associated with the orientation of the ellipsoidal path to be tracked by the user and the stiffness property of the resistance by using weighted measures of muscle activations.
Committee
Hanz Richter, Ph.D. (Advisor)
Antonie van den Bogert, Ph.D. (Committee Member)
Eric Schearer, Ph.D. (Committee Member)
Kenneth Sparks, Ph.D. (Committee Member)
Douglas Wajda, Ph.D. (Committee Member)
Pages
251 p.
Subject Headings
Engineering
;
Mechanical Engineering
;
Robotics
;
Robots
Keywords
robotics
;
optimization
;
optimal control
;
control systems
;
Extremum Seeking Control
;
biomechanics, advanced training, rehabilitation
;
human performance
;
artificial intelligence
;
neural networks
;
cyber-physical machines
;
advanced exercise machines
Recommended Citations
Refworks
EndNote
RIS
Mendeley
Citations
De las Casas Zolezzi, H. J. (2021).
Model-Free Optimization of Trajectory and Impedance Parameters on Exercise Robots with Applications to Human Performance and Rehabilitation
[Doctoral dissertation, Cleveland State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=csu1625490714196286
APA Style (7th edition)
De las Casas Zolezzi, Humberto.
Model-Free Optimization of Trajectory and Impedance Parameters on Exercise Robots with Applications to Human Performance and Rehabilitation.
2021. Cleveland State University, Doctoral dissertation.
OhioLINK Electronic Theses and Dissertations Center
, http://rave.ohiolink.edu/etdc/view?acc_num=csu1625490714196286.
MLA Style (8th edition)
De las Casas Zolezzi, Humberto. "Model-Free Optimization of Trajectory and Impedance Parameters on Exercise Robots with Applications to Human Performance and Rehabilitation." Doctoral dissertation, Cleveland State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1625490714196286
Chicago Manual of Style (17th edition)
Abstract Footer
Document number:
csu1625490714196286
Download Count:
669
Copyright Info
© 2021, all rights reserved.
This open access ETD is published by Cleveland State University and OhioLINK.