Doctor of Philosophy in Engineering, University of Toledo, 2007, Chemical Engineering
This research has concentrated on the development of methods for creating exfoliated clay nanocomposites with poly (ethylene terephthalate) (PET) for the purpose of improving barrier and other properties. For this purpose, extrusion blending and in situ polymerization were investigated. The melt extrusion was studied as a function of mobility of PET chain, affinity of clay modifier, and solid state polymerization (SSP). Three IVs of PET (0.48, 0.63, 0.74 dL/g) and three organic clays (Cloisite 10A, 15A, 30B) were melt blended with a twin screw extruder to evaluate variables on the properties. Addition of clay caused big molecular weight reduction after extrusion. Thermal stability experiments showed that the nanocomposites were sensitive to temperature. Fourier Transform Infrared (FTIR), however, indicated hydrolysis was the main reason for molecular weight reduction after extrusion. The SSP rate was decreased and crystallization rate became faster due to clay particles. There were basal spacing increases in PET/Cloisite 10A and PET/Cloisite 30B, but PET/Cloisite 15A did not show any change. After SSP reactions, PET/Cloisite 10A and PET/Cloisite 30B nanocomposites had a new peak at low angle in X-ray diffracton (XRD), indicating more expansion of basal spacing.
In situ polymerization was investigated in detail as a function of time and temperature of polymerization, mode of addition of the clay in esterification and in polycondensation, ethylene glycol/terephthalic acid ratio (E/T), diethylene glycol (DEG) suppressor, reactor pressure, antioxidant, and metal stabilizer. There was a limitation to reach 0.60 dL/g IV when the clay was added into the reactor at PET melt polymerization conditions. Foam generation made the melt polymerization of nanocomposites difficult. The concentrations of carboxyl and hydroxyl end groups showed big differences from normal values of PET, due to severe thermal degradation during melt polymerization. This thermal degradation caused drast (open full item for complete abstract)
Committee: Saleh Jabarin (Advisor)
Subjects: