Doctor of Philosophy, University of Akron, 2014, Polymer Science
Polyisobutylene due to its unique properties, such as exceptional chemical, oxidative and thermal stability, low gas permeability and biocompatibility (bioinert), is a widely used material in applications ranging from oil additives to biomaterials. The objective of this dissertation was to study the copolymerization of alloocimene, a renewable monomer, and isobutylene under the traditional butyl rubber polymerization conditions: H2O/AlCl3 initiating system in methyl chloride solvent at -95 °C. It was our hypothesis that polyalloocimene would lead to improved filler interaction.
Our work led to the discovery of the first two-phase (emulsion) living isobutylene polymerization system, solving the problems associated with solution living isobutylene polymerization systems: the use of unique and commercially not available initiators, expensive coinitiator at high concentrations and poor heat transfer due to the high viscosity of the reaction mixture even at low polymer concentrations (15wt%). High molecular weight copolymers, Mn = 200,000 to 400,000 g/mol, with molecular weight distribution of Ð = 1.5 to 2.1, were prepared containing 9 to 30 wt% alloocimene at 80 to 90 % conversion. The copolymerization of alloocimene and isobutylene was found to be living up to 40 % conversion, or 6.5 minutes, resulting in a diblock polymer structure, consisting of a polyalloocimene-rich first block and a polyisobutylene second block. Tri- and tetrablock copolymers were prepared by sequential monomer addition technique. Both di- and multiblock structures showed thermoplastic elastomeric properties. This is the first example of a diblock copolymer thermoplastic elastomer. This is also the first copolymerization system allowing the preparation of tri- and tetrablock copolymer polyisobutylene-based thermoplastic elastomers using an inexpensive polymerization system.
Diblock copolymers showed outstanding reinforcement with carbon black: the ultimate tensile strength increased from 2- (open full item for complete abstract)
Committee: Judit Puskas Dr (Advisor); Gary Hamed Dr (Committee Chair); Matthew Becker Dr (Committee Member); Mesfin Tsige Dr (Committee Member); Avraam Isayev Dr (Committee Member)
Subjects: Polymer Chemistry; Polymers