Doctor of Philosophy (PhD), Wright State University, 2017, Environmental Sciences PhD
The goal of this research was to study the electrochemical behavior of tri-nuclear clusters of molybdenum and tungsten. In addition, the feasibility of using these clusters as catalysts for the purpose of oxidizing ethanol was investigated. Four tri-nuclear cluster compounds were studied: hexa-µ2-acetatotriaquadi-µ3-oxotrimolybdenum (IV, IV, IV) trifluoromethanesulfonate [Mo3O2(O2CCH3)6(H2O)3](CF3SO3)2, hexa-µ2-acetatotriaquadi-µ3-oxodimolybdenum (IV, IV) tungsten (IV) trifluoromethanesulfonate [Mo2W2O2(O2CCH3)6(H2O)3](CF3SO3)2, hexa-µ2-acetatotriaquadi-µ3-oxomolybdenum (IV) ditungsten (IV, IV) trifluoromethanesulfonate [MoW2O2(O2CCH3)6(H2O)3](CF3SO3)2, and hexa-µ2-acetatotriaquadi-µ3-oxotritungsten (IV, IV, IV) trifluoromethanesulfonate [W3O2(O2CCH3)6(H2O)3](CF3SO3)2.
Data was gathered from experimental results with cyclic voltammetry for the four tri-nuclear clusters. Initially, an ionic liquid, EMIBF4 (1-ethyl-3-methylimidazolium tetrafluoroborate), was used as the solvent. Subsequent solvents for use with these clusters were investigated, including ACN (acetonitrile) and NMF (N-methylformamide). The secondary solvent system settled on was the DMSO-TBAHFP solvent system. Each tri-nuclear cluster displayed a reversible redox reaction and one or more irreversible reduction reactions. The redox peak potentials were found to be Ep,a: -0.44V and Ep,c: -0.42V for Mo3, Ep,a: -0.32V and Ep,c: -0.43V for Mo2W, Ep,a: -0.31 V and Ep,c: -0.44 V for MoW2, and Ep,a: -0.42 and Ep,c: -0.46 for the W3 tri-nuclear cluster. The irreversible reduction reactions for each tri-nuclear cluster were observed at Ep,c(2): -0.74 for Mo3, Ep,c(2): -1.15 for Mo2W, Ep,c(2): -1.14 for MoW2, and Ep,c(2): -0.84 for the W3 tri-nuclear cluster. The diffusion coefficients in DMSO were determined to be DMo3 = 9.105E-06 cm2s-1, DMo2W = 1.743E-05 cm2s-1, DMoW2 = 1.764E-05 cm2s-1, and DW3 = 1.991E-05 cm2s-1.
Exploring the electrocatalytic capability of these compounds was another effort made, by a (open full item for complete abstract)
Committee: Vladimir Katovic Ph.D. (Advisor); Jay Johnson Ph.D. (Advisor); Suzanne Lunsford Ph.D. (Committee Member); William Heineman Ph.D. (Committee Member); Christopher Barton Ph.D. (Committee Member); Doyle Watts Ph.D. (Committee Member)
Subjects: Alternative Energy; Chemistry; Environmental Science; Materials Science