OCLEP+: ONE-CLASS INTRUSION DETECTION USING LENGTH OF PATTERNS

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science

By

SAI KIRAN PENTUKAR
B.Tech., Jawaharlal Nehru Technological University, 2012

2017
Wright State University
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Sai Kiran Pentukar ENTITLED OCLEP+: One-Class Intrusion Detection Using Length of Patterns BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science.

Guozhu Dong, Ph.D.
Thesis Director

Mateen Rizki, Ph.D.
Chair, Department of Computer Science & Engineering

Committee on Final Examination

Guozhu Dong, Ph.D.

Junjie Zhang, Ph.D.

Bin Wang, Ph.D.

Robert E.W. Fyffe, Ph.D.
Vice President for Research and Dean of the Graduate School
ABSTRACT

Pentukar, Sai Kiran. M.S., Department of Computer Science and Engineering, Wright State Uni-
versity, 2017. OCLEP+: One-Class Intrusion Detection Using Length of Patterns.

In an earlier paper, a method called *One-class Classification using Length statistics of (jumping) Emerging Patterns (OCLEP)* was introduced for masquerader detection.

Jumping emerging patterns (JEPs) for a test instance are minimal patterns that match the test instance but they do not match any normal instances.

OCLEP was based on the observation that one needs long JEPs to differentiate an instance of one class from instances of the same class, but needs short JEPs to differentiate an instance of one class from instances of a different class.

In this thesis, we present *OCLEP+*, *One-class Classification using Length statistics of Emerging Patterns Plus* by adding several new ideas to OCELP. OCLEP+ retains the one-class training feature of OCELP, hence it only requires the normal class data for training. Moreover, OCELP+ has the advantage of being not model or signature based, making it hard to evade. OCELP+ uses only length statistics of JEPs, making it a robust method. Experiments show that OCELP+ is more accurate than OCLEP and one-class SVM, on the NSL-KDD datasets.
Contents

1 Introduction ... 1

2 Preliminaries ... 3
 2.1 Discretization ... 3
 2.2 Emerging Patterns 3
 2.3 Border Differential Algorithm 4

3 Concepts of OCLEP+ 5
 3.1 Why length of EPs is more important for ID 5
 3.2 Define Length Statistics (LS) 6
 3.3 Framework of OCLEP+ 6
 3.4 How OCLEP+ builds classifiers using the LS features 7
 3.5 Illustration of OCLEP+ 8

4 Experiment Evaluation 11
 4.1 Datasets used in the experiment 11
 4.2 Data used in experiments and for training 11
 4.3 Competing algorithms used 12
 4.4 Accuracy of algorithm 12
 4.4.1 Experiment A 14
 4.4.2 Experiment B 15
 4.5 Cutoff and selected parameter values 16
 4.6 Impact of parameters 17
 4.6.1 Choosing k 17
 4.6.2 Choosing r 18
5 Related Works

5.1 One Class SVM .. 21
5.2 OCLEP ... 21
5.3 Difference between OCLEP and OCLEP+ 22
5.4 OCLEP+ vs Other multi class training classifiers 22
5.5 Other Works .. 23

6 Discussion and Future Works

Appendices .. 25

Bibliography ... 27
List of Figures

4.1 OCLEP+: ROC curve for experiment A . 15
4.2 OCLEP+: ROC curve for experiment B . 16
4.3 Experiment results of the algorithm for different values of k 18
4.4 Experiment results of the algorithm for different values of r 19
4.5 Experiment results of the algorithm for different values of l 20

5.1 Accuracy of other multi class classifiers . 23
List of Tables

3.1 Sample dataset of normal instances .. 8
3.2 Mapping table for example dataset ... 9
3.3 Discretized sample dataset of normal instances 10

4.1 Description of datasets for training and testing 12
4.2 Experiment A: TP, FP, TN and FN comparison 14
4.3 Experiment A: Comparison of OCLEP+ .. 14
4.4 Experiment B: TP, FP, TN and FN comparison 15
4.5 Experiment B: Comparison of OCLEP+ .. 16
4.6 Choosing \(k \): Evaluation results .. 17
4.7 Choosing \(r \): Evaluation results .. 18
4.8 Choosing \(l \): Evaluation results .. 20

1 Symbols table ... 26
1

Introduction

In a world where the usage of the Internet has become an integral part of many organizations' operations, effective intrusion detection systems (IDS) are becoming increasingly important, for protecting these organizations from the ever growing risk of cyber threats.

Current IDS have major weaknesses, because they are mostly signature based or model based, or they require both the normal and intruder data to train their IDS classifier.

In this thesis we present a robust and effective method, namely OCLEP+, One-class Classification using Length statistics of Emerging Patterns Plus, that overcomes the above weaknesses. At a high level, OCLEP+ uses length statistics of jumping emerging patterns (JEPs) to detect anomalies, and importantly, by One-class we mean that OCLEP+ uses only normal data to train its detection engine.

Given a test instance x, JEPs are minimal patterns (given as conditions on attributes) that match x but they do not match any of the normal data instances [2][4][5]. We note that JEPs are not frequent patterns, as they only match one instance. OCLEP+ is based on the observation that one often needs long JEPs to differentiate an instance s of a class from set of N instances of the same class, but often needs very short JEPs to differentiate an instance x of one class from a set of N instances of other class.

OCLEP+ uses minimal length statistics of the lengths of JEPs concerning a test instance. Cutoff on these statistics is obtained using the normal data instances in the training process.

OCLEP+ has several advantages over other approaches: it has better accuracy compared to One-Class SVM; it is easy to train as it requires only the normal class data for training; it is hard to evade by the intruders as it is not model or signature based approach. Being able to train
with only normal class data is significant for building an IDS engine because it is hard to collect
anomaly class data, especially when an organization is in the initial stages of incorporating IDS in
its infrastructure. These features imply that OCLEP+ is an excellent choice to consider for a robust
intrusion detection system.

While OCLEP+ started from OCLEP [2], it contains several new features which make it more
accurate and robust. These will be detailed later.

In the rest of this thesis, chapter 2 presents all required preliminaries. In chapter 3, the Length
Statistics are defined and the OCLEP+ algorithm is discussed. It also presents an illustration of the
OCLEP+ algorithm. Chapter 4 discusses the dataset used for evaluation and presents evaluation
results comparing OCLEP+ against One Class SVM and OCLEP. Chapter 5 discusses about One
Class SVM, OCLEP and also about other works related to one class classification methodology.
Finally, in Chapter 6 we discuss the summary of the thesis and also possible future works.
2

Preliminaries

2.1 Discretization

Discretization is the process of transforming quantitative data into qualitative data [7]. It can also be defined as the process of transforming numerical attributes into a small number of intervals. Even though quantitative data can be used for learning classifiers, qualitative data is needed for pattern mining and it can also add value when building classifiers [14].

Discretization can be achieved by many to one mapping of the quantitative data to a qualitative value. An example is to discretize values for age into categories such as 20-39, 40-59, and 60-79. Let’s consider the following records for age attribute: 10, 20, 24, 25, 32, 35, 36, 40. Then our discretization categories could be (-Inf 10], (10 20], (20 30], (30 40], (40 Inf). Then the discretized mapping for 10 would be A, 20 would be B, 24 → C, 25 → C, 32 → D, 35 → D, 36 → D, 40 → D.

Commonly used discretization methods include equi-width, equi-depth, and entropy based methods. In this algorithm we are using equi-width discretization method.

2.2 Emerging Patterns

We use the concept of emerging patterns (EPs) [4] [6] in OCLEP+. EPs are patterns whose support in one class is very high compared to the support in the other class. Growth rate of emerging patterns [2] is defined as the ratio of its support in one class over the support in another. Given two datasets D_1 and D_2, for each pattern X we define $supp_{d1}(X)$ as the support of X in D_1 and similarly $supp_{d2}(X)$ as the support of X in D_2. Then the growth rate (GR) of pattern X [5] from D_1 to D_2 is defined as
2.3. BORDER DIFFERENTIAL ALGORITHM

\[GR(X) = \begin{cases}
0 & \text{if supp}_{d_1}(X) = 0 \text{ and } supp_{d_2}(X) = 0 \\
\infty & \text{if supp}_{d_1}(X) = 0 \text{ and } supp_{d_2}(X) \neq 0 \\
\frac{supp_{d_2}(X)}{supp_{d_1}(X)} & \text{otherwise.}
\end{cases} \]

The emerging patterns with growth rate of \(\infty \) are called as Jumping Emerging Patterns [4].

In this thesis, for jumping emerging pattern mining, we have \(D_1 = \{s\} \) consisting of just one data instance and \(D_2 \) is a set of normal class instances.

2.3 Border Differential Algorithm

In this thesis, we use a simplified version of border differential algorithm [4]. Border differential algorithm accepts a discretized instance \(t \) and a set of normal discretized instances \(T \). Below, we view each discretized instance as a set of items.

The following is our simplified version of border differential algorithm, \(\text{BorderDiff}(t,T) \):

1. Compute the differences: Assume that \(T = \{t_1, t_2, t_3, t_4, ..., t_n\} \).

 For each \(i \), let \(d_i = t - t_i \)

2. Eliminate non minimal sets in \(\{d_1, ..., d_n\} \): A non minimal set is a set in \(\{d_1, ..., d_n\} \) that is a super set of other sets in \(\{d_1, ..., d_n\} \). It can be proven that non minimal sets lead to increased computation time but they do not have any impact on the results of this algorithm.

3. Compute cross product and minimization iteratively: Let \(cp_1 = \{\{x_1, x_2\} | x_1 \in d_1, x_2 \in d_2\} \).

 Then for \(i = 2, ..., n \),

 \[\text{Compute}^{\text{"crossproduct"}}(cp_i) = \{X \cup \{x_i\} | X \in cp_{i-1} \text{ and } x_i \in d_i\} \]

 and remove all non minimal sets from \(cp_i \).

 \[\text{e.g.} \text{Min} \left(\{1, 123, 15, 14, 234, 45, 235, 5\}\right) = \{1, 234, 5\} \]

4. Return \(cp_n \) (or the last \(cp_i \) if some \(d_i \)'s are removed)
3

Concepts of OCLEP+

We now introduce our OCLEP+ method for intrusion detection. In a nutshell, OCLEP+ uses one class training data, i.e. a set of normal instances to train the classifier and build some EP length statistics, and then makes classification decision based on the length statistics obtained for the test instances.

3.1 Why length of EPs is more important for ID

To answer this question, let D_1 and D_2 be two different classes of data in a dataset. Let us pick an instance t_1 from D_1 and pick a subset T_1 of $D_1 - \{t_1\}$ and compute $\text{BorderDiff}(t_1, T_1)$. Let us also pick another instance t_1' from D_2 and pick a subset T_1' from D_1 and compute $\text{BorderDiff}(t_1', T_1')$.

Under the assumption that data of a particular class are similar to each other, $\text{BorderDiff}(t_1, T_1)$ yields longer patterns and $\text{BorderDiff}(t_1', T_1')$ yields short patterns. The reason behind is that since t_1 and T_1 belong to the same class, it needs long patterns to differentiate them and since t_1' and T_1' are from different classes, they require very short patterns to differentiate.

This leads to the conclusion that instances from same class yields long patterns and instances from different classes yields short patterns\(^1\). This is helpful for intrusion detection because, as we are training our classifier with the normal data instances and any other instance from the normal class yields long patterns and an instance from the anomaly class yields short patterns. Thus using the length statistics of the patterns obtained, we can successfully classify if an instance is normal or anomaly class data.

\(^1\)The fact was first noted and used in the OCLEP paper \cite{2}.
3.2 Define Length Statistics (LS)

In this thesis, we use the following length statistics to differentiate a normal and an anomaly class data.

The minimum length for an instance s is defined as the length of the pattern, which is shortest of all the patterns generated by the border differential algorithm for s. According to the concept of emerging patterns, data from the same class have long minimal length and data from different classes have short minimal length. As we are training our classifier with normal data, any other instance from normal class yield patterns of longer length and instance from the anomaly class yield shorter patterns.

Given each instance s, an integer $r > 0$, and a set T_i of instances of the normal class, we define

$$ MinLen(s) = \text{Min}(\{|p| \mid p \in \bigcup_{i=1}^{r} \text{BorderDiff}(s, T_i)\}) $$

We note that we run the $\text{BorderDiff}()$ algorithm r number of times which will be discussed in section 3.3, hence the r in the above formula. To calculate the minimal length of all the patterns, we collect the patterns generated at each round and choose the pattern with shortest length of all the patterns.

3.3 Framework of OCLEP+

The following is the algorithm to train the OCLEP+ classifier.

Algorithm 1 OCLEP+ Training

pick a random set S of k instances from N

foreach s in S do
 foreach i in $\{1...r\}$ do
 pick a random subset T_i of l instances from $N \setminus \{s\}$
 compute $\text{BorderDiff}(s, T_i)$
 end
 Compute $MinLen(s) = \text{Min}(\{|p| \mid p \in \bigcup_{i=1}^{r} \text{BorderDiff}(s, T_i)\})$
end

Compute the cutoff value which satisfies 5 percentile of the minimal lengths(section 3.2) obtained.
3.4. HOW OCLEP+ BUILDS CLASSIFIERS USING THE LS FEATURES

Remark 1: \(k \) is the number of random instances we choose to train our algorithm. OCLEP+ is such that it doesn’t require to compute the length statistics for all the instances of normal class. You get the same classification parameters even if you perform the training for all instances of normal class training-data or calculate for a decent number of instances. In our experiments, \(k \) is chosen to be 800 based on our experimental results in section 4.6.1.

Remark 2: \(r \) is the number of times \(\text{BorderDiff()} \) is computed for the same instance. For every round of \(\text{BorderDiff()} \), we collect the emerging patterns obtained and choose the pattern with minimal length of all the rounds of \(\text{BorderDiff()} \) to compute the minimal length, length statistics as described in section 3.2. \(r \) is required to eliminate the probability of false length statistics obtained due to few records that are labeled as anomaly but similar to the normal class data. In our experiments based on the results in section 4.6.2 we choose \(r = 7 \).

Remark 3: \(l \) is the size of random instances(\(T \)) set chosen from \(N \) (set of normal data) for every instance which we want to classify. It’s chosen such that if the size of \(N \) is small, \(l \) is \(|(N) - 1| \). But if \(N \) is considerably large, then \(l \) can be any number like 300, 500 etc. For the NSL-KDD dataset we choose \(l \) to be 400 based on our experimental results described in section 4.6.3.

The following is algorithm to use the OCLEP+ classifier on a test instance.

\begin{algorithm}
\caption{OCLEP+ Testing}
\begin{algorithmic}
\For {a testing instance, \(x \)}
\EndFor
\State \textbf{foreach} \(i \) \textbf{in} \{1...r\} \textbf{do}
\State \quad \text{pick a random subset} \(T_i \) \text{ of} \(l \) \text{ instances from} \(N \)
\State \quad \text{compute} \(\text{BorderDiff}(x, T_i) \)
\EndFor
\State Compute \(\text{MinLen}(x) = \text{Min}(\{|p| \mid p \in \bigcup_{i=1}^{r} \text{BorderDiff}(x, T_i)\}) \)
\If {\(\text{MinLen}(x) \geq \text{cutoffobtainedintraining} \)}
\State Classify \(x \) as normal instance;
\Else
\State Classify \(x \) as anomaly instance;
\EndIf
\end{algorithmic}
\end{algorithm}

3.4 How OCLEP+ builds classifiers using the LS features

Once we have the emerging patterns as output of the border differential algorithm, we compute the minimum length statistics as described in section 3.2. We then calculate the threshold or cut off
3.5. ILLUSTRATION OF OCLEP+

value to differentiate a normal instance from an anomaly. The cutoff value for the minimum length statistics to determine if an instance is normal or anomaly class is chosen such that 5 percentile of the training length statistics are more than the cutoff value.

3.5 Illustration of OCLEP+

The following is an illustration of OCLEP+ algorithm. To explain the algorithm we chose 4 features from NSL-KDD dataset, which is the dataset we used for our experiment evaluation. The features we chose for this illustration are, service, flag, src_bytes, dst_bytes. The following Table 3.1 is a one class normal data with the 4 chosen features.

<table>
<thead>
<tr>
<th>Service</th>
<th>Flag</th>
<th>src_bytes</th>
<th>dst_bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp_data</td>
<td>SF</td>
<td>600</td>
<td>0</td>
</tr>
<tr>
<td>other</td>
<td>SF</td>
<td>146</td>
<td>0</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>232</td>
<td>8153</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>199</td>
<td>420</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>287</td>
<td>2251</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>300</td>
<td>13788</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>233</td>
<td>616</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>343</td>
<td>1178</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>253</td>
<td>11905</td>
</tr>
<tr>
<td>other</td>
<td>SF</td>
<td>147</td>
<td>105</td>
</tr>
<tr>
<td>telnet</td>
<td>SF</td>
<td>437</td>
<td>14421</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>227</td>
<td>6588</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>215</td>
<td>10499</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>241</td>
<td>1400</td>
</tr>
<tr>
<td>http</td>
<td>SF</td>
<td>303</td>
<td>555</td>
</tr>
<tr>
<td>http</td>
<td>S0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.1: Sample dataset of normal instances

As described in section 2.1, the above table need to be discretized to efficiently perform the classification using OCLEP+. Table 3.3 is the discretized table of the above dataset which is derived
3.5. **ILLUSTRATION OF OCLEP+**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Range</th>
<th>Mapped to Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>ftp, data</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>other</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>http</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>telnet</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>unknown service</td>
<td>5</td>
</tr>
<tr>
<td>Flag</td>
<td>SF</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>S0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>unknown flag</td>
<td>8</td>
</tr>
<tr>
<td>src_bytes</td>
<td>[0 – 200)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>[200 – 400)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>[400 – ∞)</td>
<td>11</td>
</tr>
<tr>
<td>dst_bytes</td>
<td>[0 – 5000)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>[5000 – 10000)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>[10000 – ∞)</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 3.2: Mapping table for example dataset

Based on the mapping reference table 3.2.

Let’s consider an instance which belongs to the same normal class and apply border differential algorithm on it.

| http | SF | 255 | 861 |

The discretized form of the above example would be the following.

| 3 | 6 | 10 | 12 |

Application of border differential algorithm as described in section 3.3 yields us an emerging pattern of length 2 which is \{10, 12\}.

Let’s consider another transaction which belongs to the anomaly class and apply border differential algorithm on it.

| supdup | S0 | 0 | 0 |

The discretized form of the above example would be the following.

| 5 | 7 | 9 | 12 |

Application of border differential algorithm yields us an emerging pattern of length 1 which is \{5\}. It can be observed that application of OCLEP+ algorithm on the normal instance with the normal class data gave us an emerging pattern of longer length, however attack instance with normal class data gave us an emerging pattern of shorter length. Based on this significant jumping emerging pattern, we can identify an anomaly instance from a normal instance.
Table 3.3: Discretized sample dataset of normal instances

<table>
<thead>
<tr>
<th>Service</th>
<th>Flag</th>
<th>src_bytes</th>
<th>dst_bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
4

Experiment Evaluation

4.1 Datasets used in the experiment

We use the NSL-KDD dataset1 to evaluate OCLEP+ classifier. NSL-KDD is an improved version of KDDCUP'99 dataset2. KDD-Cup is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction with KDD-99 (The Fifth International Conference on Knowledge Discovery and Data Mining). The KDDCUP dataset includes a wide variety of intrusions that are simulated in a military network environment. This dataset was widely used in evaluating many intrusion detection algorithms but it suffers from many disadvantages such as having many redundant records because of which the results were more biased towards the algorithms that are based on frequency of records. NSL-KDD addressed the disadvantages of KDDCUP by removing all the duplicate records \cite{12}. Moreover, the records were selected such that the percentage of records is inversely proportional to the difficulty level thus promoting more accurate evaluation of different learning techniques \cite{12}.

4.2 Data used in experiments and for training

One of the main features of OCLEP+ is that it requires only one class, i.e normal class instances, to train the classifier. NSL-KDD dataset provides a \texttt{KDDTrain+_20Percent} file that contains both anomaly as well as normal instances with 41 features to train the Intrusion Detection classifiers. To train our classifiers, we separated the normal instances from the file and trained our classifiers with

1NSL-KDD: http://www.umb.ca/cic/research/datasets/nsl.html
the 13499 normal instances thus obtained.

We use two different datasets to evaluate the classifier trained from the set of 13499 normal instances as described above. In Experiment A, all the 125973 instances of the `KDDTrain+` file which includes both the normal and also the anomaly instances are tested with our classifiers. In Experiment B, we use the `KDDTest+` file which contains 22544 instances to evaluate our classifier.

<table>
<thead>
<tr>
<th>Training</th>
<th>File</th>
<th>Num of Instances</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDDTrain+_20Percent</td>
<td>13499</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment A</td>
<td>KDDTrain+</td>
<td>125973</td>
<td>Normal/Anomaly</td>
</tr>
<tr>
<td>Experiment B</td>
<td>KDDTest+</td>
<td>22544</td>
<td>Normal/Anomaly</td>
</tr>
</tbody>
</table>

Table 4.1: Description of datasets for training and testing

4.3 Competing algorithms used

In this section, OCLEP+ is compared against One Class SVM with linear, polynomial, and RBF kernels, and also OCLEP. The reason to choose the above three versions of SVM for evaluation is that they are very popular and also use only one class normal data to train the classifier; we do not consider many other classifiers and techniques since they use multi-class data, which is both the normal as well as anomaly data, to train their classifier.

4.4 Accuracy of algorithm

Precision, recall, F-score and Accuracy are the metrics we use to compare the prediction performance of the algorithms. For any classification algorithm, there can be a possibility of four classification cases and these help to understand the difference between various metrics that we use.

1. True Positives (TP): The number of positive instances predicted as positives.
2. False Positives (FP): The number of negative instances predicted as positives.
3. True Negatives (TN): The number of negative instances predicted as negatives.
4. False Negatives (FN): The number of positive instances predicted as negatives.

Accuracy can be defined as the proportion of the correct results that are achieved by the classifier.

\[
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
\]

Though accuracy is a good metric to determine the prediction performance of a classifier, it alone cannot be used to determine the prediction performance because it suffers from accuracy paradox and as it does not consider the false positives and false negatives of a classifier, it can be tricked to produce better accuracy result despite producing a poor prediction performance. This is especially true when the two classes are not balanced.

Precision helps to determine the number of actual positive data accurately predicted out of all the data predicted as positive by the classifier. It can be defined as,

\[
Precision = \frac{TP}{TP + FP}
\]

A high precision of a classifier means that it is really good at not classifying the normal data as positive (anomaly). A less precision mean that there are lot of normal data that are falsely predicted as positive.

Recall helps to determine the number of actual positive data accurately predicted out of all the positive data. It can be defined as,

\[
Recall = \frac{TP}{TP + FN}
\]

A high recall rate means that all the positive data are accurately predicted as positive. A less recall rate mean that there are more positive data that are determined as normal data by the classifier.

F-score is the harmonic mean of both recall and precision and it helps to give a better indication of the prediction performance of a classifier. It can be defined as,

\[
F - score = \frac{2 \times (precision \times recall)}{precision + recall}
\]
4.4. ACCURACY OF ALGORITHM

4.4.1 Experiment A

Table 4.3 is the comparison of above discussed metrics for OCLEP+ against One Class SVM with linear, polynomial, RBF kernels, and also OCLEP. As it can be observed, the F-score of OCLEP+ is 2% above that of OCLEP. It can also be observed that One class SVM often gives more recall rate compared to OCLEP and also OCLEP+ but it fails to give good precision accuracy. Figure 4.1 presents the ROC curve of OCLEP+ classifier for experiment A.

<table>
<thead>
<tr>
<th></th>
<th>True Positive</th>
<th>False Positive</th>
<th>True Negative</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCLEP+</td>
<td>53829</td>
<td>9256</td>
<td>58087</td>
<td>4801</td>
</tr>
<tr>
<td>OCLEP</td>
<td>54128</td>
<td>12967</td>
<td>54376</td>
<td>4502</td>
</tr>
<tr>
<td>OneClass SVM - Linear</td>
<td>55108</td>
<td>33679</td>
<td>33664</td>
<td>3522</td>
</tr>
<tr>
<td>OneClass SVM - Poly</td>
<td>56002</td>
<td>33652</td>
<td>33691</td>
<td>2628</td>
</tr>
<tr>
<td>OneClass SVM - RBF</td>
<td>58624</td>
<td>64832</td>
<td>2511</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4.2: Experiment A: TP, FP, TN and FN comparison

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCLEP+</td>
<td>85.33</td>
<td>91.81</td>
<td>88.45</td>
<td>88.84</td>
</tr>
<tr>
<td>OCLEP</td>
<td>80.67</td>
<td>92.32</td>
<td>86.11</td>
<td>86.13</td>
</tr>
<tr>
<td>OneClass SVM - Linear</td>
<td>62.07</td>
<td>93.99</td>
<td>74.76</td>
<td>70.47</td>
</tr>
<tr>
<td>OneClass SVM - Poly</td>
<td>62.46</td>
<td>95.52</td>
<td>75.53</td>
<td>71.20</td>
</tr>
<tr>
<td>OneClass SVM - RBF</td>
<td>47.49</td>
<td>99.99</td>
<td>64.39</td>
<td>48.53</td>
</tr>
</tbody>
</table>

Table 4.3: Experiment A: Comparison of OCLEP+
4.4. ACCURACY OF ALGORITHM

4.4.2 Experiment B

Table 4.5 summarizes the experimental results for OCLEP+, OCLEP, One Class SVM with linear, polynomial, and RBF kernels. It can be observed that OCLEP+ stands out with the best results compared to other algorithms. Figure 4.2 presents the ROC curve for experiment B.

<table>
<thead>
<tr>
<th></th>
<th>True Positive</th>
<th>False Positive</th>
<th>True Negative</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCLEP+</td>
<td>9810</td>
<td>1358</td>
<td>8353</td>
<td>3023</td>
</tr>
<tr>
<td>OCLEP</td>
<td>9762</td>
<td>1724</td>
<td>7987</td>
<td>3071</td>
</tr>
<tr>
<td>OneClass SVM - Linear</td>
<td>10615</td>
<td>4593</td>
<td>5118</td>
<td>2218</td>
</tr>
<tr>
<td>OneClass SVM - Poly</td>
<td>10859</td>
<td>4661</td>
<td>5050</td>
<td>1974</td>
</tr>
<tr>
<td>OneClass SVM - RBF</td>
<td>12825</td>
<td>9706</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4.4: Experiment B: TP, FP, TN and FN comparison
4.5. **CUTOFF AND SELECTED PARAMETER VALUES**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCLEP+</td>
<td>87.84</td>
<td>76.44</td>
<td>81.75</td>
<td>80.57</td>
</tr>
<tr>
<td>OCLEP</td>
<td>84.99</td>
<td>76.07</td>
<td>80.28</td>
<td>78.73</td>
</tr>
<tr>
<td>OneClass SVM - Linear</td>
<td>69.80</td>
<td>82.72</td>
<td>75.71</td>
<td>69.79</td>
</tr>
<tr>
<td>OneClass SVM - Poly</td>
<td>69.97</td>
<td>84.62</td>
<td>76.60</td>
<td>70.57</td>
</tr>
<tr>
<td>OneClass SVM - RBF</td>
<td>56.92</td>
<td>99.94</td>
<td>72.53</td>
<td>56.91</td>
</tr>
</tbody>
</table>

Table 4.5: Experiment B: Comparison of OCLEP+

![ROC curve for experiment B](image.png)

Figure 4.2: OCLEP+: ROC curve for experiment B

Based on the above two experimental evaluation results, it can be concluded that OCLEP+ stands out as an algorithm with good recall rate and also an acceptable precision which makes it more robust algorithm compared to One Class SVM.

4.5 Cutoff and selected parameter values

In section 3.3, we introduced 3 parameters k, r, and l that we use in our algorithm. In the following section, we will discuss the chosen values for the parameters and also the cutoff value obtained in our experiment to make classification decision.

Based on the results obtained in section 4.6, and many more experiments with various combination of parameter values, it was observed that optimal results are obtained when $k = 800$, $r = 7$
and \(l = 400 \). The cutoff value of minimal length statistics obtained by OCLEP+ algorithm with those parameters in place is 3. Any instance which on application of OCLEP+ testing algorithm generating a pattern with minimal length of 3 or more is classified as normal or anomaly otherwise.

4.6 Impact of parameters

In this section, we discuss how the different parameters of the algorithm; \(k \), \(r \) and \(l \) which are discussed in section 3.3 are chosen. Our experiments show that the evaluation results are optimum when \(k = 800 \), \(r = 7 \) and \(l = 400 \). We ran a series of experiments to choose the right values which is discussed below.

4.6.1 Choosing \(k \)

We ran the experiment with different values of \(k \) by choosing \(l = 400 \) and \(r = 7 \) as constants. The results of experiment are shown in table 4.6. It can be observed from the experimental results that we got optimum result for \(k \geq 700 \). So we chose \(k \) to be 800. The reason is, as we are training with fewer instances, the cutoff value is not accurate and it would be less than or equal to 2, which means all instances generating an emerging pattern with length 2 are also falsely identified as normal instances.

<table>
<thead>
<tr>
<th>(k)</th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>FPR</th>
<th>TPR</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>200</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>300</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>400</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>500</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>600</td>
<td>4301</td>
<td>565</td>
<td>9146</td>
<td>8532</td>
<td>0.06</td>
<td>0.34</td>
<td>88.39</td>
<td>33.52</td>
<td>48.60</td>
<td>59.65</td>
</tr>
<tr>
<td>700</td>
<td>9822</td>
<td>1360</td>
<td>8351</td>
<td>3011</td>
<td>0.14</td>
<td>0.77</td>
<td>87.84</td>
<td>76.54</td>
<td>81.80</td>
<td>80.61</td>
</tr>
<tr>
<td>800</td>
<td>9822</td>
<td>1360</td>
<td>8351</td>
<td>3011</td>
<td>0.14</td>
<td>0.77</td>
<td>87.84</td>
<td>76.54</td>
<td>81.80</td>
<td>80.61</td>
</tr>
<tr>
<td>900</td>
<td>9822</td>
<td>1360</td>
<td>8351</td>
<td>3011</td>
<td>0.14</td>
<td>0.77</td>
<td>87.84</td>
<td>76.54</td>
<td>81.80</td>
<td>80.61</td>
</tr>
<tr>
<td>1000</td>
<td>9822</td>
<td>1360</td>
<td>8351</td>
<td>3011</td>
<td>0.14</td>
<td>0.77</td>
<td>87.84</td>
<td>76.54</td>
<td>81.80</td>
<td>80.61</td>
</tr>
</tbody>
</table>

Table 4.6: Choosing \(k \): Evaluation results
4.6. IMPACT OF PARAMETERS

4.6.2 Choosing r

We ran the experiment with r ranging from 1 to 10 with $k = 800$ and $l = 400$ as constants. The results of experiment are shown in table 4.7. It can be observed based on the figure 4.4 that the result curve is almost flat from $r = 5$. So we choose $r = 7$ to make sure we get optimum results.

\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{r} & \textbf{TP} & \textbf{FP} & \textbf{TN} & \textbf{FN} & \textbf{FPR} & \textbf{TPR} & \textbf{Precision} & \textbf{Recall} & \textbf{F-score} & \textbf{Accuracy} \\
\hline
1 & 9127 & 976 & 8735 & 3706 & 0.10 & 0.71 & 90.34 & 71.12 & 79.59 & 79.23 \\
\hline
2 & 9515 & 1136 & 8575 & 3318 & 0.12 & 0.74 & 89.33 & 74.14 & 81.03 & 80.24 \\
\hline
3 & 9656 & 1231 & 8480 & 3177 & 0.13 & 0.75 & 88.69 & 75.24 & 81.42 & 80.45 \\
\hline
4 & 9727 & 1279 & 8432 & 3106 & 0.13 & 0.76 & 88.38 & 75.80 & 81.61 & 80.55 \\
\hline
5 & 9766 & 1312 & 8399 & 3067 & 0.14 & 0.76 & 88.16 & 76.10 & 81.69 & 80.58 \\
\hline
6 & 9787 & 1348 & 8363 & 3046 & 0.14 & 0.76 & 87.89 & 76.26 & 81.67 & 80.51 \\
\hline
7 & 9807 & 1358 & 8353 & 3026 & 0.14 & 0.76 & 87.84 & 76.42 & 81.73 & 80.55 \\
\hline
8 & 9814 & 1374 & 8337 & 3019 & 0.14 & 0.76 & 87.72 & 76.47 & 81.71 & 80.51 \\
\hline
9 & 9838 & 1384 & 8327 & 2995 & 0.14 & 0.77 & 87.67 & 76.66 & 81.80 & 80.58 \\
\hline
10 & 9831 & 1408 & 8303 & 3002 & 0.14 & 0.77 & 87.47 & 76.61 & 81.68 & 80.44 \\
\hline
\end{tabular}
\caption{Choosing r: Evaluation results}
\end{table}
4.6 IMPACT OF PARAMETERS

4.6.3 Choosing l

We ran the experiment with l ranging from 100 to 1000. The results of the experiment are shown in table 4.8. It can be observed that increasing l results in poor recall rate but improvement in precision. It can also be observed that the F-score is maximum at $l = 400$. So we chose $l = 400$ for this experiment. The reason for F-score to again decline after $l = 500$ is that, larger T from N (section 3.3) means presence of more patterns in T that are slightly similar to the attack instance resulting in the attack being falsely classified as normal.

Figure 4.4: Experiment results of the algorithm for different values of r
4.6. IMPACT OF PARAMETERS

<table>
<thead>
<tr>
<th>l</th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>FPR</th>
<th>TPR</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10388</td>
<td>3189</td>
<td>6522</td>
<td>2445</td>
<td>0.33</td>
<td>0.81</td>
<td>76.51</td>
<td>80.95</td>
<td>78.67</td>
<td>75.01</td>
</tr>
<tr>
<td>200</td>
<td>9935</td>
<td>2005</td>
<td>7706</td>
<td>2898</td>
<td>0.21</td>
<td>0.77</td>
<td>83.21</td>
<td>77.42</td>
<td>80.21</td>
<td>78.25</td>
</tr>
<tr>
<td>300</td>
<td>9846</td>
<td>1529</td>
<td>8182</td>
<td>2987</td>
<td>0.16</td>
<td>0.77</td>
<td>86.56</td>
<td>76.72</td>
<td>81.35</td>
<td>79.97</td>
</tr>
<tr>
<td>400</td>
<td>9801</td>
<td>1363</td>
<td>8348</td>
<td>3032</td>
<td>0.14</td>
<td>0.76</td>
<td>87.79</td>
<td>76.37</td>
<td>81.69</td>
<td>80.50</td>
</tr>
<tr>
<td>500</td>
<td>9758</td>
<td>1288</td>
<td>8423</td>
<td>3075</td>
<td>0.13</td>
<td>0.76</td>
<td>88.34</td>
<td>76.04</td>
<td>81.73</td>
<td>80.65</td>
</tr>
<tr>
<td>600</td>
<td>9705</td>
<td>1222</td>
<td>8489</td>
<td>3128</td>
<td>0.13</td>
<td>0.76</td>
<td>88.82</td>
<td>75.63</td>
<td>81.69</td>
<td>80.70</td>
</tr>
<tr>
<td>700</td>
<td>9621</td>
<td>1187</td>
<td>8524</td>
<td>3212</td>
<td>0.12</td>
<td>0.75</td>
<td>89.02</td>
<td>74.97</td>
<td>81.39</td>
<td>80.49</td>
</tr>
<tr>
<td>800</td>
<td>9559</td>
<td>1129</td>
<td>8582</td>
<td>3274</td>
<td>0.12</td>
<td>0.74</td>
<td>89.44</td>
<td>74.49</td>
<td>81.28</td>
<td>80.47</td>
</tr>
<tr>
<td>900</td>
<td>9468</td>
<td>1059</td>
<td>8652</td>
<td>3365</td>
<td>0.11</td>
<td>0.74</td>
<td>89.94</td>
<td>73.78</td>
<td>81.06</td>
<td>80.38</td>
</tr>
<tr>
<td>1000</td>
<td>9372</td>
<td>1025</td>
<td>8686</td>
<td>3461</td>
<td>0.11</td>
<td>0.73</td>
<td>90.14</td>
<td>73.03</td>
<td>80.69</td>
<td>80.10</td>
</tr>
</tbody>
</table>

Table 4.8: Choosing l: Evaluation results

![Figure 4.5: Experiment results of the algorithm for different values of l](image)

Figure 4.5: Experiment results of the algorithm for different values of l
Related Works

Throughout our experiment evaluation phase we compared our algorithm against One Class SVM and also OCLEP. So in this section we discuss about one class SVM, OCLEP and also all other related work done on NSL-KDD data using one class classifiers.

5.1 One Class SVM

Support Vector Machines are *maximal margin* classifiers. In the training phase, the One Class SVM algorithm maps input data, which is of single (one) class, into a high dimensional feature space via a kernel function and iteratively identifies the hyperplane that separates training data from origin with a maximum margin[8]. Now the one class problem is transformed into a two class problem, where all the training data lies in one class and the origin is the second class.

We evaluated One Class SVM using LIBSVM 3.22 [1] software with Linear, Polynomial and RBF kernels (with default settings). For intrusion detection problem on NSL-KDD dataset and using all the 41 features of dataset, it can be observed in table 4.3 and 4.5 that OCLEP+ and OCLEP outperformed One Class SVM.

5.2 OCLEP

OCLEP was first introduced in [2]. It was originally evaluated for the masquerader detection problem but it was unable to outperform One Class SVM for that problem. However because it is configuration free and requires little tuning when compared to One Class SVM, it has been widely recognized. In this thesis, the same algorithm was used for the evaluation of intrusion detection
5.3. DIFFERENCE BETWEEN OCLEP AND OCLEP+

problem and it was able to outperform One Class SVM. The reason is, one of the main features of NSL-KDD dataset is that it doesn’t include redundant records and it has been noted in [2] that OCLEP performs better than one class SVM when there are more unique instances and in-case there are more redundant instances, then one class SVM performs better. As NSL-KDD dataset which was used for evaluation doesn’t have redundant records, OCLEP was able to outperform one class SVM.

5.3 Difference between OCLEP and OCLEP+

Both OCLEP and OCLEP+ are based on length statistics of emerging patterns. However, several improvements on OCLEP are presented in this thesis which resulted in better performance for the intrusion detection problem. The following are major differences between OCLEP and OCLEP+.

(1) OCLEP+ classifier uses the minimal length feature of the emerging patterns while average length was used in OCLEP. (2) OCLEP+ algorithm computes BorderDiff() for every instance multiple times (4.6.2) to improve the robustness of classifier. (3) OCLEP failed to provide a definitive way to choose the cutoff to classify an instance. In fact it was stated that any number c satisfying $a \leq c \leq b$ where a and b are the minimum and maximum of the average lengths of the emerging patterns obtained by Borderdiff() algorithm, can be used as a cut-off threshold. In contrast, OCLEP+ chooses its cut-off by choosing a number that satisfies 5 percentile Length Statistics of the training data (4.5).

5.4 OCLEP+ vs Other multi class training classifiers

[12] compared the accuracy of other famous algorithms like $J4\delta$, Naive Bayes, NB Tree, Random Forest, Multi-layer Perceptron and SVM on the KDDTest+ dataset which we used for our Experiment B. It can be noted in figure 5.1 that the accuracy of most of the classifiers are close to OCLEP+, which has an accuracy of 80.57%.

Even though $J4\delta$, NB Tree, Random Forest and Random tree produce slightly better accuracy compared to OCLEP+ classifier, OCLEP+ is more practical to implement as it needs only one class data to train the classifier.
5.5 Other Works

There are several other algorithms that achieved better accuracy compared to OCLEP+ on NSL-KDD dataset, but those algorithms used two class data for training.

[9] was able to achieve 81.2% of accuracy for the classification problem, but they trained their classifier with two class data, i.e both anomaly, normal. Their other evaluation metrics are; Recall: 69.35; Precision: 96.59; F-score: 80.74. OCLEP+ was able to outperform their algorithm both in recall rate and also F-score.

[10] mentioned that they were able to achieve 92.16% of recall rate which is pretty impressive but it leaves behind many discrepancies. The author mentioned they were testing against 23238 instances but NSL-KDD test dataset which is KDDTest+ has only 22544 records. Moreover they proposed a one class classifier and also evaluated against One Class SVM, but they mentioned that they are using both normal, anomaly class data to train their classifier (“In this paper we have proposed a One-class small hypersphere support vector machine classifier (OCSHSVM) algorithm, which builds a learning classifier model via both normal and abnormal network traffic.”), which effectively mean they are using two class data to train their classifier and also all the anomaly and normal instances they included in training the One Class SVM classifier are considered belonging to the same class which should not be the case.
6

Discussion and Future Works

In this thesis we introduced a new improved classification algorithm, OCLEP+ and applied our classifier to the Intrusion Detection problem. OCLEP+ is a one class classifier that requires only one class data for its training. It generates EPs based on only normal class data and calculates classification cutoff for the minimal length statistics. It has been demonstrated that OCLEP+ can achieve very good detection rate compared to the previous algorithm, OCLEP, One Class SVM and also other algorithms that used two class data for its training. OCLEP+ doesn’t need anomaly class data for its training and also as it is also not a model based approach, it is hard to evade by the intruders. All the above results and features imply that OCLEP+ is more robust and effective intrusion detection system.

Intrusion detection is a hard problem. Everyday many new attacks can happen and the attacks may involve the use of new features. Being able to train the classifier with one class data is very important because of the diversified nature of these attacks. We might never have enough data to train our classifier if we rely on anomaly class data for training.

We used all the 41 features of the NSL-KDD dataset to evaluate the performance of our algorithm. Possible future work could be to test the performance of the classifier using few selected features of the dataset. And OCLEP+ can be tested for other data mining problems like document classification [11], web page classification [13], image retrieval [3], fall detection [15] and check performance of the classifier.
Appendices
Table 1: Symbols table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCLEP+</td>
<td>One Class Classification using Length statistics of Emerging Patterns Plus</td>
<td>OCLEP</td>
<td>One Class Classification using Length Statistics of Emerging Patterns</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection System</td>
<td>JEP</td>
<td>Jumping Emerging Pattern</td>
</tr>
<tr>
<td>x</td>
<td>Instance of anomaly class data</td>
<td>s</td>
<td>Instance of normal class data</td>
</tr>
<tr>
<td>EP</td>
<td>Emerging Pattern</td>
<td>GR</td>
<td>Growth Rate</td>
</tr>
<tr>
<td>N</td>
<td>Normal dataset</td>
<td>T</td>
<td>Subset of N</td>
</tr>
<tr>
<td>k</td>
<td>Number of random instances to get the length statistics for training the classifier</td>
<td>r</td>
<td>Number of times (\text{BorderDiff}()) computer for same instance</td>
</tr>
<tr>
<td>l</td>
<td>Size of T</td>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
<td>TP</td>
<td>True Positive</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
<td>FPR</td>
<td>False Positive Rate</td>
</tr>
<tr>
<td>TPR</td>
<td>True Positive Rate</td>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
</tbody>
</table>
References

Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. Pebl: Positive example based learning for web page classification using svm. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 239–248, New York, NY, USA, 2002. ACM.
