CHARACTERIZATION AND DESIGN OF A COMPLETELY PARAMATERIZABLE VHDL DIGITAL SINGLE SIDEBAND MODULATOR CIRCUIT FOR QUICK IMPLEMENTATION IN FPGA OR ASIC ELECTRONIC WARFARE PLATFORMS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

By

HAROLD SCOTT AXTELL
B.S., University of Akron, 2002

2010
Wright State University
I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY Harold Scott Axtell ENTITLED
Characterization and Design of a Completely Parameterizable VHDL
Digital Single Sideband Modulator Circuit for Quick Implementation
in FPGA or ASIC Electronic Warfare Platforms BE ACCEPTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF Master of Science in Engineering.

J.M. Emmert, Ph.D.
Thesis Director

Kefu Xue, Ph.D.
Department Chair

Committee on
Final Examination

J.M. Emmert, Ph.D.

Saiyu Ren, Ph.D.

Raymond Siferd, Ph.D.

John A. Bantle, Ph.D.
Interim Dean
of Graduate Studies
ABSTRACT

In this work we present the design and characterization of a parameterizable Digital Single Sideband Modulator (DSSM) circuit for use with a Digital Radio Frequency Memory (DRFM) or other signal processing circuits. Field Programmable Gate Arrays (FPGAs) can be used as a prototyping platform for quickly verifying and hardware testing a digital circuit or system. FPGAs can also be used as an implementation platform for a digital circuit or system. A main advantage of FPGAs over that of an Application Specific Integrated Circuit (ASIC) is that it can be quickly (and often dynamically) reprogrammed; whereas an ASIC can take months to fabricate. Currently there is limited capability to quickly and easily generate backend digital signal processing systems for electronic warfare (EW) applications for implementation on an FPGA or an ASIC platform. It is advantageous (especially for dynamically reprogramming FPGAs) for backend EW processing to have parameterizable hardware description language (HDL) code to assist in quickly implementing digital processing capabilities for EW systems. The purpose of this thesis work is to provide just such a capability. We present a completely generic VHDL digital single sideband modulator (DSSM) based on a parameterizable Hilbert Transform (HT). We characterize and test the code so that the user can quickly implement a system to meet their expectations. The entire system is described in VHDL to provide an inexpensive, long term, portable, and parameterizable solution which allows for rapid design and redesign of DSSM circuits. This design is technology portable so it will be viable now and in the future for rapid prototyping, demonstration, and implementation. So as technology changes this code transitions with it. The DSSM via HT rapidly delivers digital circuits for FPGA or ASIC radar or other EW applications.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>I.</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The Hilbert Transform</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Carrier Wave Generation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>VHDL</td>
<td>12</td>
</tr>
<tr>
<td>II.</td>
<td>RELATED WORK</td>
<td>15</td>
</tr>
<tr>
<td>III.</td>
<td>DSSM IMPLEMENTATION</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Hilbert Transform Hardware Implementation</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sine & Cosine Generation</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Test Plan</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Hilbert Transform Testing</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>DDS Testing</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Digital Single Sideband Modulator Testing</td>
<td>41</td>
</tr>
<tr>
<td>IV.</td>
<td>RESULTS AND ANALYSIS</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>HT Parameterization Point Effects</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Direct Digital Synthesizer</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>DSSM Parameterization Point Effects</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Two tone input</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Input Frequency Sweep</td>
<td>52</td>
</tr>
<tr>
<td>V.</td>
<td>CONCLUSION</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Future Work</td>
<td>56</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>VHDL Source Code</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Hilbert Transform</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Sine and Cosine Wave Generation</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Multiply and Adder Block</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Testbench</td>
<td>68</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 – Modulator ... 3
Figure 2 – Single Sideband modulation via phase-shift method ... 8
Figure 3 – Filter method of SSB generation ... 16
Figure 4 – Phase method of SSB generation .. 16
Figure 5 – Weaver’s method for single-sideband generation .. 17
Figure 6 – System of 12 Weaver modulators .. 18
Figure 7 – A 12 channel digital Weaver modulator ... 19
Figure 8 – Darlington’s Recursive & Nonrecursive cascade filters .. 20
Figure 9 – Darlington’s optimized Weaver based DSSB modulator ... 20
Figure 10 – Analog Multiplex Weaver modulator ... 21
Figure 11 – Output frequency spectrum of the multiplex Weaver modulator 23
Figure 12 – Modified multiplex Weaver modulator ... 24
Figure 13 – SSB generation by method proposed by Gurcan et. all .. 25
Figure 14 – Discrete Hilbert Transform block diagram ... 31
Figure 15 – DSSM Block Diagram .. 34
Figure 16 – HT signal Amplitude and Phase Error .. 47
Figure 17 – DSSM Signal to Quantization Noise .. 50
Figure 18 – DSSM SQNR Input Frequency Sweep, 4 Input & Coefficient bits 53
Figure 19 – DSSM SQNR Input Frequency Sweep, 8 Input & Coefficient bits 55
LIST OF TABLES

Table 1 – Discrete Hilbert Transform Tap values ... 12
Table 2 – HT output results for mixed HT parameters .. 45
Table 3 – DDS Amplitude and Phase Error and Signal to Quantization Noise 48
Table 4 – DSSM output results for mixed HT parameters ... 49
Table 5 – Two Tone Input Test Results .. 52
Table 6 – Truncated Hilbert Transform Coefficients for 4 bits ... 54
ACKNOWLEDGEMENTS

This thesis would not have been possible without the unending amount of support and encouragement from my family. My parents have instilled in me the values, morals, and determination needed to accomplish any task in front of me. My siblings, their spouses, and my in-laws have been a constant source of encouragement and a bright spark on dark days. I owe my deepest gratitude to my wife and daughter, Heather and Isabella. Day after day, they have been a driving force in my life and have sacrificed so that I can reach this goal.

I am very grateful to my supervisor, Dr. Marty Emmert, for his encouragement, guidance and support through this learning process. He has always made himself available to me and pushed me to improve my abilities.

Special thanks go to my friend Vipul Patel for his persistent encouragement and lending time to edit my work. I would like to give thanks to Dr. Ray Siferd and Dr. Saiyu Ren for their guidance as part of my thesis committee. Also, thanks to the New Electronic Warfare Specialists Through Advanced Research by Students (NEWSTARS) program for sponsoring my research.

H. Scott Axtell
I. Introduction

As the war on terror continues there is a constant need for faster detection capabilities with rapid deployment. To facilitate this increased need for speed the information processing capabilities of most systems are implemented digitally on the backend of an analog receiver system. In these systems the analog-to-digital converter (ADC) component is a major bottleneck and lags behind development of other system parts due to complexity. Because of this, most digital backend solutions are fixed and/or must be used with proprietary software for configuration. This dramatically limits the use of the high speed backend system making them only point solutions for each application. In order to alleviate this costly process with limited use this work proposes a digital single sideband modulator (DSSM) via parameterizable Hilbert transform (HT). This thesis describes the design of an inexpensive, parameterizable, and technology portable DSSM written in a simple language that will be viable now and in the future for rapid prototyping, demonstration, and implementation in both field programmable gate array (FPGA) and integrated circuit (IC) technology.

A radar topology has an analog/radio frequency (RF) front end with a digital backend. The front end refers to all the analog, continuous time, components that make up the radar from the antenna back to the ADC. This would include parts such as filters, amplifiers, mixers, baluns, and power amplifiers. The back end refers to all the digital, discrete time, components in the radar after the ADC. The front end through the antenna captures the signal of interest, filters out unwanted frequencies, and amplifies the information. The ADC then converts the analog signal into a digital one. The
transmission and reception of signals are much easier using RF techniques. The processing of the signal is done much faster and easier digitally. The ADC is the link between these sections.

The DSSM will be implemented after the ADC and its main function is to convert the input signal to a desired frequency. The first step is to create a 90 degree phase shifted copy of the input signal. These two signals, the original input and the 90 degree phase shifted version, are then mixed with a pair of quadrature signals. And finally, the two resultant signals are summed or subtracted to create the frequency converted signal. The DSSM in this work is comprised of three major components: a quadrature modulator known as the Hilbert transform, a direct digital frequency synthesizer (DDS), and a summation block. The Hilbert transform creates the 90 degree phase shifted version of the input signal. The original input signal is called the I, in phase, signal and the modified signal is the Q, quadrature modulated, signal. The I and Q signals are then mixed with a cosine and sine signal, respectively, generated by the DDS. These two signals are then either added or subtracted to get the final output. The DSSM can alleviate digital backend dependence on an analog front end through adaptability to any ADC output allowing for independent design of the front and back ends.

Modulation

The DSSM is able to shift the frequency of a signal up or down the spectrum while maintaining the input signal’s information through the use of modulation. Modulation is
an essential part of communication systems in order to easily transmit, receive, and process signals. It involves two signals, the modulating signal containing the information and a carrier signal, Figure 1 below. The modulator’s function is to impress the modulating signal’s message upon the carrier. In this manner the resulting modulated wave carries the message [1]. The carrier is chosen by the user based on the application needs. Modulation occurs in a transmitter while the reverse process of demodulation is carried out in the receiver to recover the message from the modulated signal. The resulting modulated signal’s frequency is based on the input and carrier signal frequency. If it’s higher than the input frequency it’s considered to be up converted or down converted if it’s lower.

![Figure 1 – Modulator](image)

This ability to shift the message signal’s frequency is quite significant with many applications. One everyday application deals with the common radio signal transmission. If all of the radio stations transmitted at the same frequency then each station’s signal would interfere with one another and the messages would be lost. To avoid this, each station is assigned a specific frequency band and a tuner on the radio is used to select one. The frequency from every radio station starts off as human speech or music over an audible range of 300 to 3500 Hz [6]. A modulator is then used to shift the frequency up to the radio stations assigned frequency band for transmission. At home your radio’s
tuner is used to select a specific frequency and the demodulator shifts it to a common intermediate frequency (IF). By using a common IF frequency this allows the use of a single tuned IF amplifier for signals from any radio station [8]. Without the use of a modulator to bring signals down to a common frequency a separate set of tuned components would be needed for every radio station. This would make radios physically larger and heavier and more expensive because of the additional components needed. Modulation also enables the ability to send multiple signals across the same medium, such as phone lines. This process is called multiplexing and the two prevalent methods are frequency division multiplexing (FDM) and time division multiplexing (TDM) [1]. Another reason for frequency translation is due to physical antenna requirements. For efficient radiation of electromagnetic energy, the antenna must be longer than 1/10 of the wavelength [6, 9]. The wavelength is a physical distance and can be found using Equation 1 below. Lambda (λ) is the wavelength, c is the speed of light, and f is the frequency of interest.

\[c \approx 3.0 \times 10^8 \frac{m}{s} \]
\[\lambda = \frac{c}{f} \]

(1)

Without modulation this would mean your home radio antenna would have to be at least 100 km long to receive the 300 Hz signal. This is not physically practical so commercial AM and FM broadcasting frequencies are shifted/modulated to 535 – 1605 kHz and 88-108 MHz, respectively. The lowest frequency of 535 kHz requires an antenna length of 56.02 meters. For a broadcasting company it’s easy enough to build a tower to this optimum length. For the average listener at home a 56 meter antenna isn’t practical but
not necessary. Broadcasting stations increase their output power to make up for the non-ideal antenna length of your radio.

The frequency shift is easily described by the frequency shifting property of the Fourier Transform. We can represent a time domain signal $f(t)$ in the frequency domain by taking the Fourier Transform of that signal $F(\omega)=F[f(t)]$. We can also generate the time domain representation from the frequency domain by taking the inverse Fourier Transform, $f(t)=F^{-1}[F(\omega)]$. The transform pairs and their associated equations are listed respectively below in Equations 2 and 3 [6].

$$\mathcal{F}\{f(t)\} \rightarrow F(\omega) \quad f(t) \leftrightarrow F(\omega)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} \, dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t} \, d\omega$$

These equations are very important in the study of signal analysis because they allow us to move between the time and frequency domain. If we take the time domain function $f(t)$ and multiply it by $e^{j\omega_0 t}$ this is the same as a frequency shift by ω_0, Equation 4 below.

$$\mathcal{F}\{f(t)e^{j\omega_0 t}\} \rightarrow F(\omega)e^{-j\omega_0 \tau} \quad \int_{-\infty}^{\infty} f(t)e^{-j\omega_0 t} \, dt = \int_{-\infty}^{\infty} f(t)e^{-j(\omega-\omega_0)\tau} \, dt = F(\omega-\omega_0)$$

$$f(t)e^{j\omega_0 t} \leftrightarrow F(\omega-\omega_0)$$

This can also be seen if we multiply the function $f(t)$ by $e^{-j\omega_0 t}$ in Equation (5) below.
Frequency shifting in the time domain is accomplished by multiplying the function by a sinusoid because $e^{j\omega t}$ is not a real function that can be generated [6]. If we use $\cos \omega_0 t$ as our sinusoidal signal and use Euler’s identity we get the following equation.

$$f(t) \cos \omega_0 t = \frac{1}{2} \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right]$$ \hspace{1cm} (6)

From here we can substitute Equations 4 and 5 into Equation 6 and get the final form of the frequency shift equation for the cosine function [6].

$$f(t) \cos \omega_0 t \iff \frac{1}{2} \left[F(\omega - \omega_0) + F(\omega + \omega_0) \right]$$ \hspace{1cm} (7)

This equation shows that by multiplying a function in the time domain by a sinusoid results in the generation of two signals, located at $\omega \pm \omega_0$, with half the amplitude.

The frequency shift can also be seen in the time domain as a result of the trigonometric product formula.

$$\cos x \cos y = \frac{1}{2} \left[\cos(x + y) + \cos(x - y) \right]$$ \hspace{1cm} (8)

In the equation above, we will let x represent the modulating signal carrying the speech or music at frequency f_m. The carrier signal is represented by $\cos(y)$ at frequency f_c. If we assume the input and carrier signals are pure tones, they can further be represented by
cos(2\pi f_m t) and cos(2\pi f_c t) respectively [3]. Substituting into Equation 7 above results in a form of modulation called double sideband suppressed carrier (DSB-SC) amplitude modulation (AM) [8].

\[
\cos(2\pi f_c t) \cos(2\pi f_m t) = \frac{1}{2} \cos \left[\pi (f_c + f_m) t \right] - \frac{1}{2} \cos \left[\pi (f_c - f_m) t \right]
\] (9)

The result of DSB-SC modulation is two signals, one down converted to the frequency \(f_c - f_m \) and the other signal up converted to frequency \(f_c + f_m \). The signal at \(f_c - f_m \) is called the lower sideband (LSB) and at \(f_c + f_m \) is the upper sideband (USB) [6]. The upper and lower sidebands are symmetrical about the carrier frequency so they both contain the entire message signal which is a waste of bandwidth. Also note the amplitude of the original signal is cut in half, denoted by the \(\frac{1}{2} \) on the right side of the equation. DSB-SC modulation does shift the frequency but wastes bandwidth and transmission power [1].

Another form of modulation is single sideband (SSB) which eliminates one of the sidebands saving bandwidth. Filtering can be used to achieve SSB modulation by generating the DSB-SC signal and then using a bandpass filter to eliminate the upper or lower sideband [8]. Another method is the phase shift method shown in Figure 2 which was chosen for this thesis. The phase shift method uses two DSB-SC signals that are 90 degrees out of phase and a pair of quadrature carriers [7]. The DSB upper and lower sidebands are phased such that they cancel out on one side and add on the other [1]. The Hilbert transform is used to generate the phase shifted copy of the input signal and will be discussed in more detail in the following section. This signal is referred to as the
quadrature (90 degree phase shifted) signal, or Q signal. The original input signal is referred to as the in-phase signal, or I signal [7].

![Diagram of Single Sideband modulation via phase-shift method]

Figure 2 – Single Sideband modulation via phase-shift method

Looking at Figure 2, the input to the DSSM is split into the I and Q channel. The I channel runs along the top portion directly into the modulator and the Q channel runs through the bottom portion passing through the Hilbert transform before the modulator. After the input signal passes through the modulator on the I channel it will be in the form of Equation 9. Before modulation in the Q channel, the input signal passes through the Hilbert Transform where its phase is shifted by 90 degrees and of the form $\sin(2\pi f_m t)$. This signal is then modulated with the carrier $\sin(2\pi f_c t)$, see Equation 10 below.

$$\sin(2\pi f_c t)\sin(2\pi f_m t) = \frac{1}{2} \cos \left[\pi (f_c - f_m) t \right] - \frac{1}{2} \cos \left[\pi (f_c + f_m) t \right]$$ \hspace{1cm} (10)

Finally, the two signals from Equation 9 and 10 are either added or subtracted to get the frequency shifted lower or upper sideband. In Equation 11 below, the I and Q channel signals are subtracted to get the upper sideband signal.
\[I - Q = \cos(2\pi f_c t)\cos(2\pi f_m t) - \sin(2\pi f_c t)\sin(2\pi f_m t) \]
\[= \frac{1}{2} \cos(\pi (f_c + f_m)t) - \frac{1}{2} \cos(\pi (f_c - f_m)t) - \frac{1}{2} \cos(\pi (f_c + f_m)t^-) \]
\[= \cos(\pi (f_c + f_m)t^-) \]

(11)

In the equation above it can be seen that by subtracting these two modulated signals we end with the upper sideband as noted by \(f_c + f_m \). To get the lower sideband these two DSB-SC signals would be added. Also note the absence of the \(\frac{1}{2} \) in the front of the final form of Equation 11. All of the signal power and bandwidth is concentrated at this one frequency point, \(f_c + f_m \).

The Hilbert Transform

The Hilbert transform is a filter implemented through convolution whose main function is to create a copy of the input signal that is 90 degrees out of phase while maintaining the amplitude. It’s based on the signum function which is similar to a unit step function, but with odd symmetry about the vertical axis. The signum function is defined below in Equation 11 [1].

\[
\text{sgn} \, t = \begin{cases}
+1 & t>0 \\
-1 & t<0
\end{cases}
\]

(11)

It has the following Fourier Transform.
The transfer function can be written in terms of the signum function since a ±90 degree phase shift is equivalent to multiplying by $e^{±j90°} = ±j$ [1].

$$H(f) = -j \operatorname{sgn} f = \begin{cases} -j & f > 0 \\ +j & f < 0 \end{cases}$$

(13)

This indicates that all positive frequencies will have a -90 phase shift and a +90 degree phase shift for negative ones. To find the corresponding impulse response we use the duality theorem with the Fourier Transform of the signum function as follows,

$$F \left[\frac{1}{j \pi} \right] = \frac{1}{j \pi}$$

(14)

The impulse response, $h(t)$, can then be found by adding the phase shift, $±j$, to the result in Equation 14 and taking the Inverse Fourier Transform.

$$F^{-1} \left[\frac{1}{j \pi} \right] = \frac{1}{j \pi}$$

(15)

$$h(t) = \frac{1}{\pi t}$$

The Hilbert Transform system response can now be defined as a convolution of the modified signum impulse, Equation 15, and an input $x(t)$ as seen in Equation 16.

$$\hat{x}(t) = x(t) * \frac{1}{\pi t}$$

(16)
For the actual implementation of the discrete Hilbert Transform, Oppenheim [7] gives the following equation for the filter tap coefficient values. It is zero outside of the specified interval, $0 \leq n \leq M$, making it a finite impulse response (FIR) type filter where n is the current sample number, M is the number of delays, and n_d is the number of delays divided by two [7]. A filter tap is on either side of each delay so the total number of taps will be $M+1$.

$$h[n] = \begin{cases} \sin^2 \left[\frac{\pi}{n - n_d} \right], & 0 \leq n \leq M \\ 0, & \text{otherwise} \end{cases}$$

(17)

The following table lists the Hilbert Transform coefficient tap values for a 4 through 12 order (M) filter. The filter order is listed across the top of the table with the tap number on the left side.

<table>
<thead>
<tr>
<th>Number of Delays (M)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap Coefficient Number</td>
<td>0</td>
<td>-0.2546</td>
<td>0.0000</td>
<td>-0.1819</td>
<td>0.0000</td>
<td>-0.1415</td>
<td>0.0000</td>
<td>-0.1157</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>-0.6366</td>
<td>0.0000</td>
<td>-0.3183</td>
<td>0.0000</td>
<td>-0.2122</td>
<td>0.0000</td>
<td>-0.1592</td>
<td>0.0000</td>
<td>-0.1273</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>-1.2732</td>
<td>0.0000</td>
<td>-0.4244</td>
<td>0.0000</td>
<td>-0.2546</td>
<td>0.0000</td>
<td>-0.1819</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.6366</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.6366</td>
<td>0.0000</td>
<td>-0.3183</td>
<td>0.0000</td>
<td>-0.2122</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.4244</td>
<td>0.0000</td>
<td>1.2732</td>
<td>0.0000</td>
<td>-1.2732</td>
<td>0.0000</td>
<td>-0.4244</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.3183</td>
<td>0.0000</td>
<td>0.6366</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.6366</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>0.2546</td>
<td>0.0000</td>
<td>0.4244</td>
<td>0.0000</td>
<td>1.2732</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.2122</td>
<td>0.0000</td>
<td>0.3183</td>
<td>0.0000</td>
<td>0.6366</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.0000</td>
<td>0.1819</td>
<td>0.0000</td>
<td>0.2546</td>
<td>0.0000</td>
<td>0.1592</td>
<td>0.0000</td>
<td>0.2122</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>0.1415</td>
<td>0.0000</td>
<td>0.1273</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Table 1 – Discrete Hilbert Transform Tap values

Looking at the values in the table above, the HT filter will be a Type III or IV FIR filter because none of the sets of taps are symmetrical. If M is even it will be a Type III, or IV if it’s odd. By choosing an even number for M, making it a type III, gives an advantage in that the even indexed samples of the impulse response are always zero \[^7\]. This means that we only need to compute half of the coefficient values during instantiation. More importantly, during continuous operation we only need to compute half of the multiplications originally needed per cycle. When M is even and twice divisible by 2, $M = 4, 8, 12$, the numbers have a point symmetry with the maximum value around the center as 0.6366. We could also take advantage of this by calculating half the values and mirror them with the opposite sign to complete the coefficient values saving some storage space.

Carrier Wave Generation

In order for modulation to occur the input signal needs to be mixed, or modulated, with a carrier signal. It can be generated through an external source, such as a signal generator, or created within the overall system through the use of a sine-wave synthesizer. The three methods mainly used today for frequency synthesis are phase-locked loops (PLLs), direct analog (DA), and direct digital synthesis (DDS) \[^4\].
The PLL method is the most widely used today due to its low cost and relatively simple design. It is a non-linear feedback loop whose output frequency is dependant on the input control voltage. DA synthesis design is more complicated and thus more expensive than PLL design but offers excellent signal to noise ratio and fast switching speeds. At the center of both of these techniques is a feedback amplifier that is adjusted to get the desired range of frequencies making them analog based methods. The DDS is purely a digital technique where the sine wave samples are generated, instead sampling a sine wave to get the needed samples [4]. The DDS method was chosen for this implementation to enable an all digital SSB implementation without the need for external signal generators.

VHDL

Very high-speed integrated circuit Hardware Description Language (VHDL) code allows for several different points of customization to this application based on changing ADC needs and desired accuracy. It enables the user to integrate the DSSM with almost any ADC through the ability to choose the input frequency, power level, number of input bits, and a second input signal can be added. Its accuracy and/or physical space required can be modified by adjusting the number of filter taps, coefficient bit size, and windowing function to make these tradeoffs. VHDL also allows for quick re-design based on changing requirements.
One of the great benefits of using VHDL is it ensures the use of this code for many years to come without cost. VHDL is an open source language and requires no special tools or packages to run it. It is not technology dependent so as FPGA and ASIC technology advances this will still be applicable. Because of this, many years from now this code will be able to be used and modified to fit current application needs without any cost or risk of becoming obsolete. There will be no need to worry about future investments in software upgrades, additional packages for expanded capabilities, or finding a select few with the knowledge of how to use it.
II. Related Work

The following section illustrates earlier designs and the beginnings of digital single sideband (SSB) generation. Each presents the information in a unique way and some build on prior work. I have used this information as a baseline for my work, to get a better understanding of the challenges involved, and to create a standard of expectations for the conclusions of my work.

A basic method used for single sideband generation is the Weaver method. Donald Weaver presented this method in 1956 in the Proceedings of the Institute of Radio Engineers. It is based on two widely known techniques of the time and combines them into a single more efficient form. These include filters with sharp cutoff frequencies or wideband 90 degree phase difference networks which his does not use.

The filter method uses a series of balanced modulators and filters to create and detect the single sideband signal, Figure 3. The input signal is combined in the balanced modulator with the carrier frequency producing the two sidebands. The balanced modulator removes the carrier frequency and the following filter passes the intended sideband while rejecting the other. When the desired frequency location of the SSB is high compared with the original location of the input signal, it becomes very difficult to obtain filters that will pass one sideband and reject the other [11]. In order to relax the filter requirement additional pairs of balanced modulators and filters can be added in series.
The phasing method uses a 90 degree phasing network to create two signals from the input that are equal in amplitude but whose phase differ by 90 degrees, Figure 4. Using the same method, the translating frequency is also split into two 90 degree components. Each of the outputs of the phasing network is applied to a balanced modulator with one of the translating frequencies. Each balanced modulator will suppress the carrier while passing the two sidebands. The signals are then summed, cancelling out one of the sidebands and leaving a single sideband. However, the phases and amplitudes must be very tightly controlled because they will dictate the amount of suppression of the unwanted sideband.

It is possible to achieve 60 to 80 dB suppression using the filter method and up to 40 dB using the phasing method [11]. This is based on maintaining low modulation in the linear
amplifiers used in the filter method and tight control of the amplitudes and phases in the phasing method.

Weaver’s method uses both filtering and balanced modulators but does not require a strict cutoff filter or wideband phase difference networks. His method, Figure 5, splits the input into two channels that feed into a parallel set of balanced modulators. The signals then pass through low pass filters and another set of balanced modulators. Lastly, the balanced modulator outputs are summed for the final output. The carrier frequency of the first balanced modulator is the center frequency of the input signal and of the desired sideband signal for the second one [11].

![Figure 5 – Weaver's method for single-sideband generation](image)

After the input passes through the first modulator the signal is down converted and centered at zero. The frequency range the signal originally occupied is now unoccupied providing a wide transition region for the low pass filter. The final pair of modulators is centered at the intended frequency of the final single sideband output. The two signals are then combined in the final summing circuit to produce the desired single sideband signal.
In two tone tests the undesired signal was more than 30 dB below the desired signal. Additional advantages include a bilateral design so it can be used for modulation & demodulation, mostly passive components for greater reliability, and lack of critical and/or expensive designed elements [11].

In 1970 Sidney Darlington built upon Weaver’s design and looked at DSSB modulation from a system standpoint comparing Hartley and Weaver modulators. His initial calculations showed that using Hartley modulators would require fewer computations than the Weaver method, but proposes a system of 12 Weaver modulators that would yield an even greater computational reduction. This paper focuses on optimizing the proposed Weaver system design by reducing the number of multiplications per second.

This implementation is intended for insertion into a larger analog system through the use of analog-to-digital (ADC) converters on the input and digital-to-analog (DAC) converters on the output, Figure 6. The proposed system of Weaver modulators is designed to accept the 12 digitized inputs and form them into a single output.

![Figure 6 – System of 12 Weaver modulators](image)
He estimated that using a Hartley topology there would need to be 13×10^6 multiplications per second and scratch pad storage of 192 words. In comparison, the Weaver topology in Figure 7 below would take double the amount of multiplications per second. This topology takes the Weaver method as is and sums the 24 outputs, $y^n(t_n)$, to form a single output, $z(t_n)$ [2].

![Figure 7 – A 12 channel digital Weaver modulator](image)

To increase the efficiency of the Weaver architecture for implementation in the 12 channel system Darlington splits the low-pass filter into two cascaded filters, Figure 8. The first filter is a recursive filter designed for and outputs at $2f_o$ samples per second. It is more complex than the second filter with sharp cutoff frequencies, but requires fewer multiplications per second. The second filter is a non-recursive filter designed for $16 \times 2f_o$ to reach the required number of output samples per second. This filter is less complex with a longer cutoff period and eliminates extraneous frequencies due to the low sampling rate of the first filter [2].
The second step involves combining the 12 channel system output starting from the nonrecursive filter. This includes the 24 nonrecursive filters, product modulators and the summation that yields the digital system output. Through this optimization only every 16th sample needs calculated, it’s periodic with a period of 32, and when the value is calculated it only takes 76 multiplications. The final optimized system is shown below in Figure 9.

Darlington estimates the total multiplication rate to be less than 3.3x10^6 multiplications per second and scratch pad storage of 450 words. This is all at a cost of increased complexity and additional scratch pad storage. Compared to the Hartley method, that’s a savings of 9.7x10^6 multiplications per second.
Another IEEE Transaction paper entitled, ‘Digital Single-Sideband Modulation,’ by Singh, Renner, and Gupta built on Darlington’s work. The authors were able to cut the number of modulators in half by implementing multiplexed modulators allowing 2 signals per modulator. This enabled them to decrease the computation time while increasing the accuracy. In addition they also discussed and created a demodulation system which required the design of a band-pass filter.

The evaluation started with the system Darlington proposed utilizing the Weaver modulator, Figure 5. The input sampling frequency is $2f_0$, the low pass filter is split into a recursive and nonrecursive filter in cascade, and the output sample rate is at $16x2f_0$ samples per second. The additional step taken was to multiplex the Weaver modulators enabling them to halve the number needed from 12 to 6.

![Figure 10 – Analog Multiplex Weaver modulator](image)

The figure above is an analog version of the multiplex Weaver modulator. The following equations show mathematically how two signals can be simultaneously modulated as single sideband at two different carrier frequencies. The two signals in question, $E_1 \cos(\omega_1 t + \phi_1)$ and $E_2 \cos(\omega_2 t + \phi_2)$ are multiplexed as the sum and difference of one another at the input to yield the following equations.
\[e_1 = E_1 \cos(\omega_1 t + \phi_1) + E_2 \cos(\omega_2 t + \phi_2) \]
\[e_2 = E_1 \cos(\omega_1 t + \phi_1) - E_2 \cos(\omega_2 t + \phi_2) \] \hspace{1cm} (18)

The inputs \(e_1 \) & \(e_2 \) then pass through the first set of modulators whose center frequency matches the input signal frequencies.

\[e_{a1} = 2e_1 \cos \omega_o t \]
\[e_{b1} = 2e_2 \sin \omega_o t \] \hspace{1cm} (19)

The constant multiplier 2 in equations (19) is used for mathematical convenience. The intermediate signals \(e_{a2} \) and \(e_{b2} \) are then found by substituting equations (18) into (19), simplifying, and neglecting those terms with frequencies outside the passband of the low-pass filter with cutoff frequency \(f_o \), become

\[e_{a2} = E_1 \cos \left[\phi_1 - \omega_o \frac{\pi}{2} + \phi_1 \right] + E_2 \cos \left[\phi_2 - \omega_o \frac{\pi}{2} + \phi_2 \right] \]
\[e_{b2} = -E_1 \sin \left[\phi_1 - \omega_o \frac{\pi}{2} + \phi_1 \right] + E_2 \sin \left[\phi_2 - \omega_o \frac{\pi}{2} + \phi_2 \right] \] \hspace{1cm} (20)

The modulating signals \(e_{a2} \) and \(e_{b2} \) are then combined with the carrier frequency terms \(\cos \omega_c t \) and \(\sin \omega_c t \), respectively, to obtain \(e_{a3} \) and \(e_{b3} \). It is important to note that the carrier frequencies are not the same.
Finally combining e_{a3} and e_{b3}, the output becomes

$$e_o = E_1 \cos \left[\phi_c + \omega_c - \omega_o \tilde{f} + \phi \right] + E_2 \cos \left[\phi_c - \omega_c + \omega_o \tilde{f} + \phi \right]$$ \hspace{1cm} (22)$$

The equation above shows that the multiplex modulator in Figure 10 will modulate one signal as the lower sideband and the other as the upper sideband with modified carrier frequencies $\omega_c + \omega_o$ and $\omega_c - \omega_o$, respectively and illustrated below.

In order to properly sample the multiplexed signals the input sampling rate was increased from Darlington’s $2f_o$ to $4f_o$ Hz. This change provides the improved accuracy by
reducing the number of interpolated samples from 16 to 8. Also, for an nth order filter the number of additions is reduced by 8n and the multiplications by 64n which results in a reduced computation time. Figure 12 below is the final digital multiplexed version of an element of the single sideband system.

Figure 12 – Modified multiplex Weaver modulator

A Fortran simulation of a single multiplex Weaver modulator and demodulator was run as proof of validity. Due to computational limitations at the time they were only able to achieve an output sample rate of four times the input sample rate instead of 16 out of the recursive filter. They were able to provide input and output simulation plots which were delayed by 200 samples to allow for settling.

The most recent attempt found for digital single sideband modulation was in 1988. The authors of a paper submitted to the IEEE International Symposium on Circuits and Systems created a digital single sideband modulator (DSSM) which was again based on the analog Weaver topology. The overall design is similar to the basic Weaver modulator.
through down conversion to baseband and filtering to remove the unwanted sideband.

The authors then wanted to avoid the possibility of mismatch error in the design of the local oscillators and mixers so they came up with a unique implementation that uses two stages of interpolation to reach the desired output frequency and a multiplexer to combine the I and Q channels to form the output.

The input signal is band limited by a band-pass filter and sampled at a frequency of f_{s1}, Figure 13. It is then split into the I and Q channel where a pair of quadrature mixers move the signal of interest to baseband and a low-pass filtered to remove the unwanted sideband. The first interpolation is carried out using a low-pass filter, taking the signal to 30 times higher than the bandwidth of the I and Q low pass filters. This step is necessary to be able to increase the sampling rate to f_{s3} using a linear interpolator without introducing spurious signals [5].

![Diagram of SSB generation by method proposed by Gurcan et al.]

Figure 13 – SSB generation by method proposed by Gurcan et. all
The linear interpolator design used to increase the sampling frequency by a factor of 4N is based on a tapped delay line filter. Its impulse response in the frequency domain lasts for two bit periods \(2/f_{s2}\) and is defined by the following equation [5].

\[
\sin^2\left(\frac{2\pi f}{f_{s2}}\right) \div \left(\frac{2\pi f}{f_{s2}}\right)^2
\]

(23)

The tap weights give a triangular shape and the delay line filter is fed at \(f_{s3}\) with signal samples at \(f_{s2}\) followed by \(4N-1\) zeros [5]. It can then be shown that this interpolating filter can be replaced by a pair of multipliers and an adder through the following equations. At any given time there will be two samples, \(x_1\) and \(x_2\), separated by \(T=1/f_{s2}\) due to the filter impulse length of \(2/f_{s2}\). The signal at the output of the filter will be

\[
y = ax_1 + bx_2
\]

(24)

where \(a\) and \(b\) are the coefficients of the convolution filter at the \(n\)th and \((n+4N)\)th taps.

Due to the triangular shape of the impulse response the coefficients \(a\) and \(b\) are

\[
a = \frac{n}{4N} \\
b = 1 - \frac{n}{4N}
\]

(25)

then substituting \(a\) and \(b\) into the equation for \(y\)

\[
y = ax_1 + bx_2 = x_2 + \frac{n(x_1 - x_2)}{4N}
\]

(26)

Therefore to interpolate the sampling frequency \(f_{s2}\) by a factor of \(4N\), take the difference of the two samples \(x_1\) and \(x_2\) at the sampling rate \(f_{s2}\) and divide the result by the
interpolation factor $4N$. This result is then taken as an increment and accumulated to x_2 at every instance n to produce the interpolated samples of the input signal at a new sampling frequency $f_{s3} = 4Nf_{s2}$. When a new sample is interpolated from f_{s2} to f_{s3} the accumulator is reset to zero and it continuously increments at a rate of f_{s3} for $4N$ clock periods [5]. Finally, when the I and Q signal samples are multiplied by the carrier at f_{s3} the output will be in the sequence I channel, Q channel, negative I channel, and negative Q channel. This will allow the use of a multiplexer and two inverters in the place of a multiplier.

A floating point simulation was conducted using Pascal/VS on an IBM 4381. The filters used were Chebyshev type IIR filters of 5th order and 0.1 dB passband ripple for the low-pass and interpolation filters. Two simulations were completed with final carrier frequencies of 40 kHz and 1.28 MHz. It was shown in power spectral density graphs for both simulations that they were able to achieve 45 dB suppression of unwanted signals. This demonstration proved they were able to design a completely digital SSB modulator and achieve good results that can be suitable for integrated circuit technology.

A method is needed for digital single sideband generation that allows for quick design, prototyping, and implementation in FPGA or integrated circuit technology with points of customization and based on fixed point simulations. Until now, the available methods offer single sideband generation based on unrealizable floating point simulations giving approximate output characteristics. The method I am proposing has been coded in VHDL which allows for custom design based on user input specifications and control of
several component parameters. This will allow for accuracy tradeoffs with the desired output tolerances. Also, VHDL is an open language and can port to any FPGA or IC fabrication technology which allows for automated design and layout in current and future IC technologies.
III. DSSM Implementation

Through the initial paper study I found there was very little previous work done on digital implementations of single sideband modulators. The majority of the papers found were from the 1970s and an attempt in the late 1980s. All of the implementations were based on the Weaver method which is a combination of two other methods, filtering and phasing. The early work was mostly theoretical and only went as far as floating point computer simulation. I was not able to find any work that was simulated with fixed point values, could be quickly prototyped, compensated for the amplitude and phase error, or allowed for tradeoffs based on user input.

This work was followed up with a MATLAB simulation to gain a better understanding of the basic operation and layout of the single sideband modulator. The Hilbert Transfer function in MATLAB simulation and VHDL synthesis proved to be the most time consuming area of work. The MATLAB simulation is ideal with floating point values and shows the validity of the design. But, floating point operation is not possible in hardware and is a very limiting constraint. There were several decisions that had to be made as to the number of bits of precision in order to maintain the accuracy of the Hilbert Transform output.
In section 0 the HT was reviewed in detail and Table 1 shows the coefficient values for a 4 through 12 order filter. When M, the filter order, is even and twice divisible by 2, \(M = 4, 8, 12 \), the tap values have a point symmetry with the maximum value around the center at 0.6366. This implementation is preferable because the even tap values are zero eliminating the computation time and hardware. Also, because of the point symmetry we would only need to find the first half of the values and then put them in positive reverse order for the other half. The problem with this choice is that all of the coefficient values are less than one. In a fixed point binary two’s compliment implementation any number less than one will be truncated to zero. In order to obtain hardware implementable values the coefficients must be scaled to values greater than one. To do this a scaling factor (SC) was introduced based on the number of coefficient bits (NC).

\[
SC = \frac{2^{NC}}{2} - 2
\]

The scaling factor increases the HT coefficients to an implementable value. In effect we move the radix point to the right giving a whole number that when truncated doesn’t result in a value of zero.

With the implementation of a scaling value, SC, the radix point location must be tracked so the bits chosen at the output correctly represent the intended result. The block diagram below, Figure 14, represents the discrete HT implementation with the parameterizable values highlighted. This implementation of the Hilbert Transform gives the user the
ability to manipulate the number of input bits (NI), coefficient bits (NC), filter taps (NT), and window type (WIN).

Figure 14 – Discrete Hilbert Transform block diagram

From the figure above it can be seen that the in-phase, I, signal is the input signal delayed by an amount equal to the order of the HT filter. The quadrature, Q, signal tap values are taken on either side of the delay, z^{-1}, and are only at odd numbers because again the even values are zero as discussed in section 0 above. Each input tap value, $x[n]$, is multiplied by the HT coefficient value, $h[n]$, and the window tap value, $w[t]$. All of the values are then summed for the final Q signal output.

Sine & Cosine Generation

The main function of the single sideband generator is to up or down convert the frequency of the input signal. This conversion is accomplished with a modulator that uses an internal or externally generated carrier signal from a signal generator and mixes it with the input signal. If an input signal is modulated with a carrier without any additional
filtering or mixing a double sideband signal would be created and there would be three distinct frequencies at the output: the carrier frequency, carrier plus the input frequency, carrier minus the input frequency. This section discusses the internal generation of the carrier frequency which makes modulation possible.

At the instantiation of the VHDL code the values of a quarter sine wave are generated and stored in a ROM. The number of points representing the quarter wave is based on a user defined value called the granularity (RG). Equation 28 below is used to calculate the actual quarter wave values.

$$SC \sin \left(\left(\frac{90^\circ}{RG} \right) \left(\frac{\pi}{180^\circ} \right) I \right)$$ \hspace{1cm} (28)

A quarter of a wave, 90 degrees, is divided by the granularity, multiplied by $\pi/180^\circ$ to convert to radians, and multiplied by the loop index (I) which increments from zero to RG. The sine of this value is calculated and multiplied by SC, which is a scaling factory based on the number of input bits in equation 29 below. It’s the largest possible two’s compliment positive value. This ensures that the generated carrier signal reaches the full peak positive value and is one away from the full negative value.

$$SC = 2^{NI-1} - 1$$ \hspace{1cm} (29)

As the system clock toggles between zero and one a subsequent ROM address is accessed and the value is output. To form the entire sine wave the ROM addresses are then accessed in reverse order, negative forward, and then negative reverse. The cosine wave is formed by accessing the values in a different order: reverse, negative forward, negative reverse, and then forward. The frequency of the generated carrier signal is based on the clock period and the granularity value. The ROM address values are output after the
system clock cycles so you must multiply the system clock period by the granularity. This value then must be multiplied by four because there are 4 quarters per period.

Another point of user control to increase or decrease the signal generator frequency is through the ‘step’ (R_STEP) value. The step indicates the number of ROM addresses to skip for each clock cycle. With a step of one, each of the ROM addresses will be output. With a step of 2, every other address will be output which reduces the number of points and therefore increasing the frequency. Equation 28 below gives the final equation used to calculate the carrier frequency for the modulation after the Hilbert transform in Figure 2. The carrier frequency is equal to the one divided by the clock period times the granularity times four over the step value. Therefore if we have a clock period (Cp) of 25 ns, a granularity of two, and a step of one the carrier frequency will be 5 MHz. If R_STEP is increased to 2 the frequency will be 10 MHz.

\[f_{\text{sin,cos}} = \frac{1}{Cp \cdot \left(\frac{\text{Granularity} \cdot 4}{\text{Step}} \right)} \]

(30)

The purpose of the signal generator is to create carrier signals, sine and cosine, which are used to mix with the information signals I and Q. This is a key step in the DSSM as it will create two double sideband signals that when added or subtracted will remove the carrier signal frequency and one of the sidebands leaving the up or down converted single sideband signal.
Test Plan

The purpose of this test plan is to fully characterize the DSSM. The tests are intended to cover the proper breadth and depth of the individual components and the system as a whole. The DSSM is comprised of three major components; Hilbert Transform, DDS sin/cos signal generator, and the Modulation & Summation block which is seen in Figure 15 below. The functionality of each component will be evaluated against a set input followed by a complete system test. The Modulation and Summation component only uses basic functionality, multiplying and adding, so there is no need to individually test this component.

![DSSM Block Diagram](image)

Figure 15 – DSSM Block Diagram

In order to fit specific applications or meet user requirements the Hilbert Transform and carrier signal generator have 6 parameters that are user defined; 4 in the Hilbert Transform and 2 in the signal generator. These parameters will be manipulated against a set input while the component and system output is collected. The data will then be evaluated to see how the component parameter manipulation affects the output. Another set of tests will measure the signal to quantization noise by sweeping the input frequency.
will holding the component parameters constant. The goal is to gather enough data to be able to model the output based on the component parameters.

The DSSM code was designed and tested using Mentor Graphics ModelSim, PE Student Edition 6.5d, advanced simulation and debugging software. A test bench was created to inputs test signals into the DSSM and record the output. It can accept up to two input signals at varying frequencies and power levels. This mixed with the six user defined component parameters creates a very large test space with many different combinations. In order to reduce the number of test cases specific values have been chosen for the input and component parameters based on practical application.

There are 13 qualitative tests performed during each simulation. These tests will check the precision and accuracy of the Hilbert Transform signal, the generated sine and cosine signals, and of the final DSSM output. The calculated values are started after 500 clock cycles to allow for settling. The following sections define the tests performed on the Hilbert Transform and signal generator components and the DSSM.

Hilbert Transform Testing

This section outlines how the HT will be tested and the data collected to fully characterize the digital implementation. The testing procedure will first be discussed followed by the calculations performed on the collected data. These calculations will
give a clear understanding on how manipulation of the input parameters affects the output.

The amplitude of the input is a ratio of the input power, in decibels (dB), based on the predefined maximum amplitude A_{max}, equation 29 below. The input to the DSSM is designed to accept two inputs for which the user can define the power, P_1 and P_2. For ease of use the maximum amplitude of the input sinusoids is set to one, the unit circle. Therefore, the amplitude of each sinusoid is a fraction of one based on its input power relative to the other sinusoid’s input power. The greater the difference in input power the greater the amplitude difference.

$$A_{\text{max}} = 1.0$$
$$P_{\text{dyn}} = P_1 \cdot 10^{P_{1\text{dB}}/10} - P_2 \cdot 10^{P_{2\text{dB}}/10}$$
$$A_2 = \frac{A_{\text{max}}}{P_{\text{dyn}}}$$
$$A_1 = A_{\text{max}} - A_2 \quad (29)$$

The tests are set-up to cycle through most of the component parameter combinations based on the predetermined test values per input frequency combination. The first set of tests will be performed using a single input frequency followed by a second round of testing with the same component combinations but with two input tones. The majority of the measured data calculations have been added to the VHDL code. These results will then be graphed to show the actual performance of the DSSM and analyzed for a relation between the input parameter combinations and output performance.
The following tests will be performed on the HT generated Q signal’s amplitude and phase in relation to the I signal’s values:

1. Phase/Amplitude difference
2. Phase/Amplitude error
3. Average phase/amplitude difference
4. Average phase/amplitude error
5. Phase/Amplitude Standard deviation

These tests are intended to measure the accuracy of the manipulated input signal. The overall objective of the Hilbert Transform is to modify the input signal’s phase by 90 degrees while maintaining the amplitude. For each discrete instance in time the scaled amplitude value is calculated for both the I and Q channel by dividing the input number by two raised to the number of input bits minus one, equation 30 below. These values are then subtracted to find the difference between them. The amplitude of the HT created quadrature, Q, signal should match the original input, I, signal. Therefore, the difference between the scaled I and Q values should ideally be zero.

\[
I_{\text{value}} = \frac{I_{\text{input}}}{2^{\text{NB}} - 1} \\
Q_{\text{value}} = \frac{Q_{\text{input}}}{2^{\text{NB}} - 1} \\
\text{Mag} = I_{\text{value}} - Q_{\text{value}}
\]

To evaluate the phase difference between the scaled I and Q values they are converted into degree measure. Ideally the phase difference should be 90 degrees.
To help quantify the degree of accuracy of the HT generated Q signal error calculations are performed on the amplitude and phase. A general error calculation is made by subtracting the measured value from the ideal value divided by the ideal value which is then multiplied by 100 to get a percentage, equation 32 below.

\[
Amp_Err = \left(\frac{|Ivalue| - |Qvalue|}{Ivalue} \right) \times 100
\]

\[
Phase_Err = \left(\frac{Angle - 90^\circ}{90^\circ} \right) \times 100
\]

Another measurement of interest is the average. The standard way to calculate the average is to add up all the values and divide by the total number of values. But, in this implementation the total number of values is too great to add together. Depending on the implementation, the DSSM could run continuously creating an infinite number of values. Therefore the average value must be calculated on a continuous basis based on available values. The average value is initially calculated through the normal method, per the equation below. The values are summed and divided by the total number of values.

\[
X_N = \frac{\sum_{i=1}^{N} x_i}{N}
\]

If another value was added to the set we could modify the above equation to include the
next value and increase the divisor by one as in equation 34 below.

\[
X_{N+1} = \frac{\sum_{i=1}^{N+1} x_i}{N+1}
\]

\[
X_{N+1} = \frac{X_{N+1} + \sum_{i=1}^{N} x_i}{N+1}
\]

It is then possible to solve equation 34 for the summation,

\[
X_N = \frac{\sum_{i=1}^{N} x_i}{N}
\]

\[
\sum_{i=1}^{N} x_i = N \times X_N
\]

and substitute equation 35 into equation 34 to get the Running Average equation as
follows.

\[
\sum_{i=1}^{N} x_i = N \times X_N
\]

\[
X_{N+1} = \frac{X_{N+1} + \sum_{i=1}^{N} x_i}{N+1}
\]

\[
X_{N+1} = \frac{X_{N+1} + N \times X_N}{N+1}
\]

The running average is the future value of the input plus the current number of values
times the current average all divided by the future number of values. The future value,
N+1, is actually the current value because the first number in the set is indexed as 0. The
first two values are averaged using index positions zero and one. The third value to be added is at index position 2, but is the N+1 value. This running average equation is used to find the average amplitude and phase difference and error between the I and Q signal.

Another calculation performed is the standard deviation of the amplitude and phase which indicates the dispersion of a set of data points from its mean. The larger the number the further the data values are from the mean value in a positive and negative direction. The ideal standard deviation for both amplitude and phase is zero which would show data precision as all of the median values are close together. The variance is first calculated and then the square root is taken to get the standard deviation. This calculated value is also based on the total number of values in the set so a running or continuous calculation is necessary. It is also found in a similar way to equation 35 above and is shown below in equation 36.

\[Var_N = \frac{x_N^2}{N} + \frac{N - 1}{N} (Var_{N-1} + X_{N-1}^2 - X_N^2) \]

(36)

The previous variance and average values are needed for this calculation and must be stored in an array.

DDS Testing

The carrier signals generated by the DDS are the sine and cosine wave which are separated by 90 degrees as in the I and Q signals from the HT. Because of this we can
perform the same tests on the DDS signals. These tests will show the difference between the sine and cosine signals.

1. Phase/Amplitude difference
2. Phase/Amplitude error
3. Average phase/amplitude difference
4. Average phase/amplitude error
5. Phase/Amplitude Standard deviation

Please reference the section above, 0 Hilbert Transform Testing, for additional details on these tests.

Digital Single Sideband Modulator Testing

The overall operation of the DSSM is to modulate the input signal’s frequency based on the carrier frequency while maintaining the message of the input signal and suppressing all other frequencies. To test this functionality the output signal will be checked for proper frequency translation and the signal to quantization noise (SQNR) will also be measured.

In order to perform these tests the Fourier Transform of the output will be taken to get the power spectrum plot of magnitude versus frequency. This plot will show the frequency location of the modulated signal and any noise or frequency points with power levels above the noise floor. A 4096 point FFT of the output is calculated in Excel and plotted. The plot can be quickly scanned to see which frequency bin the input signal was shifted
to and what other frequency points are above the noise floor. The highest magnitude point should be at the frequency of interest which will be subtracted from the calculated up or down converted frequency to check its accuracy.

The signal to quantization noise test shows the difference in decibels (dB) of the modulated output signal to the highest noise signal. The frequency with the highest amount of noise will most likely be at the carrier frequency. The log magnitude equation below is used to convert the output magnitude into decibel form [7].

\[
dB = 20\log_{10} \left(x[n] \right) 2^{NI}
\]

(37)

The output at any instance \(n, x[n] \), is multiplied by two raised to the number of input bits, NI, to give the full scale value. After the highest two magnitude points are converted into dB form they are subtracted to give the SQNR value.

The final set of tests will sweep the input frequency to check to see that the DSSM can maintain the output over the frequency range. The HT and DDS parameterization points will remain the same over the input frequency sweep range of 3 – 17 MHz with a step size of 0.05fs/2 and a sampling frequency \(f_s \) of 40 MHz. The SQNR will be calculated and plotted versus the frequency to show any variation. It is expected that the output doesn’t remain flat, but has a slight ripple pattern.
IV. Results and Analysis

The first sets of tests were used to determine basic functionality and to see how changes in the parameterizable points affect the output. For these tests the input and sampling frequency were held constant at 2 MHz and 8 MHz, respectively, with 0 dB input power and a rectangular window. Based on the clock period and DDS settings the carrier frequency was 1 MHz.

The next test sets vary the input frequency to ensure functionality across a range of frequencies. The input power was kept at 0dB and a smaller set of input parameters NI, NC, and NT were used with a rectangular window. These values were selected based on the results from the first set of tests.

Two tones were then presented at the input to the DSSM to ensure that both were translated to their proper upper or lower single sideband signal frequency. Finally, the input frequency was swept from 3 – 17 MHz at step increments of at 0.05f_s/2 with a sampling frequency of 40 MHz. For each input frequency sweep test set, input sweep from 3 – 17 MHz, the parameterization points remained the same. A 4096 point Fourier transform of the output was then calculated to obtain the magnitude of the output and plot the power spectral graph. This calculation was needed to see if there was any degradation of the output amplitude, quantization noise levels, and to check to see that the output was modulated to the proper frequency.
The VHDL code was written and simulated using ModelSim PE Student Edition 6.4d. Due to the limitations of the student version the largest single value could be 32 bits. With this limitation the largest NI or NC value tested was 24 bits requiring the other value to be 8 bits or less.

HT Parameterization Point Effects

The first sets of tests were designed to show how changes in the HT input parameters affect the output. The input and sampling frequency were held constant while varying the number of input bits (NI), HT coefficient bits (NC), and the number of HT taps (NT). On the following page,

Table 2 shows the input values and measured HT output for the first set of 48 tests. The first column on the left shows the test number followed by the input values, NI, NC, NT, and the calculated values of the HT output.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>NI</th>
<th>NC</th>
<th>NT</th>
<th>Hilbert Transform Amplitude</th>
<th>Hilbert Transform Phase</th>
<th>Measured Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average Difference</td>
<td>Average Error</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>0.063</td>
<td>6.72</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>65</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>17</td>
<td>0.063</td>
<td>6.72</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>12</td>
<td>65</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>12</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>16</td>
<td>17</td>
<td>0.063</td>
<td>6.72</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>16</td>
<td>65</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>16</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>16</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>24</td>
<td>17</td>
<td>0.063</td>
<td>6.72</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>24</td>
<td>65</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>24</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>24</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>8</td>
<td>17</td>
<td>0.047</td>
<td>4.7</td>
<td>0.05</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>8</td>
<td>65</td>
<td>0.008</td>
<td>0.78</td>
<td>0.01</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>8</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>8</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>0.039</td>
<td>3.92</td>
<td>0.04</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>12</td>
<td>65</td>
<td>0.008</td>
<td>0.78</td>
<td>0.01</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>12</td>
<td>129</td>
<td>0.004</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>12</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>16</td>
<td>17</td>
<td>0.039</td>
<td>3.92</td>
<td>0.04</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>16</td>
<td>65</td>
<td>0.012</td>
<td>1.18</td>
<td>0.01</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>16</td>
<td>129</td>
<td>0.004</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>16</td>
<td>257</td>
<td>0.004</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>24</td>
<td>17</td>
<td>0.039</td>
<td>3.92</td>
<td>0.04</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>24</td>
<td>65</td>
<td>0.012</td>
<td>1.18</td>
<td>0.01</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>24</td>
<td>129</td>
<td>0.004</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>24</td>
<td>257</td>
<td>0.004</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>0.047</td>
<td>4.69</td>
<td>0.05</td>
</tr>
<tr>
<td>34</td>
<td>16</td>
<td>8</td>
<td>65</td>
<td>0.008</td>
<td>0.78</td>
<td>0.01</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>8</td>
<td>129</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>36</td>
<td>16</td>
<td>8</td>
<td>257</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>37</td>
<td>16</td>
<td>12</td>
<td>17</td>
<td>0.039</td>
<td>3.91</td>
<td>0.04</td>
</tr>
<tr>
<td>38</td>
<td>16</td>
<td>12</td>
<td>65</td>
<td>0.010</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>12</td>
<td>129</td>
<td>0.005</td>
<td>0.49</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>12</td>
<td>257</td>
<td>0.002</td>
<td>0.20</td>
<td>0.00</td>
</tr>
<tr>
<td>41</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>0.039</td>
<td>3.93</td>
<td>0.04</td>
</tr>
<tr>
<td>42</td>
<td>16</td>
<td>16</td>
<td>65</td>
<td>0.010</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>43</td>
<td>16</td>
<td>16</td>
<td>129</td>
<td>0.005</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
<td>16</td>
<td>257</td>
<td>0.003</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>45</td>
<td>24</td>
<td>8</td>
<td>17</td>
<td>0.047</td>
<td>9.49</td>
<td>0.05</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>8</td>
<td>65</td>
<td>0.008</td>
<td>1.43</td>
<td>0.01</td>
</tr>
<tr>
<td>47</td>
<td>24</td>
<td>8</td>
<td>129</td>
<td>0.000</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>8</td>
<td>257</td>
<td>0.000</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 2 – HT output results for mixed HT parameters
In review of the table above, for the first 16 tests the number of input bits \((NI)\) was held constant at 4 bits, while the number of HT coefficient bits \(\text{(NC)}\) and taps \((HT)\) were cycled through their values. The amplitude and phase error are zero for all input combinations except when the number of taps is 17. The average difference between the I & Q amplitude increases to 0.0625 with a 6.72% error and the difference in phase drops to 86.39 degrees with an 11.27% error. The amplitude and phase standard deviation are 0.06 and 14.99, respectively. Due to the low number of taps the Q signal is not able to achieve the full swing of the input, negative eight to positive seven, which did occur for all other tap values.

When the number of input bits is increased to 8 and 16 bits and the number of coefficient bits are held constant the amplitude and phase error decrease with increasing HT taps. When the number of HT taps is 17 an increase in the number of input bits and/or coefficient bits slightly improves the error of the amplitude and phase. For example, the amplitude error is reduced from 4.71% to 3.92% when the number of input bits is held at 8 bits and the coefficient bits are increased. When the number of taps is above 17, an increase in the input bits and/or coefficient bits increases the error. When the number of taps is 65 and the number of coefficient bits are 8, the amplitude error increases from zero to 1.43% as the number of input bits increase. The phase error also increases from zero to 5.63%.

In summary, the HT error decreases with an increasing number of taps above 17. While the taps are held constant, increasing the number of input and/or coefficient bits increases
the error. An exception to this is when the number of taps is 17 as an increase in input and/or coefficient bits decreased the error.

The figure below, Figure 16, graphically shows the amplitude and phase error information from Table 2. The error percentage is on the y axis and the test number is across the x axis. There were 4 input bits for the first 16 tests and each time the number of taps was equal to 17 the error spiked. It can also be seen that the maximum amplitude error was 9.49% which occurred with 17 taps on test 45. If we exclude the 17 tap data the highest amplitude error is below two at 1.43% when NT equals 65. Therefore, all of the amplitude error spikes seen below occur when NT equals 17. The highest phase error at 13.88% also occurred on test 45 with 24 input bits and 17 taps. Again excluding the 17 tap data, the highest error is 6.25% with 16 input bits and 65 taps so the phase spikes also occur with 17 taps.

![Hilbert Transform Amplitude and Phase Error](image)

Figure 16 – HT signal Amplitude and Phase Error
Direct Digital Synthesizer

The DDS amplitude and phase error tests were the same for every test showing zero error. This is possible because the values for the quarter sine wave are calculated based on equation 28 above in section 0 and stored in a ROM. Both of the carrier waves generated for the in-phase and quadrature phase channels access the same ROM but output the values in differing order to create the sine and cosine wave. And a scaling factor is used to ensure the generated signals reach the maximum two’s compliment positive value based on equation 29.

The table below, Table 3, shows the amplitude and phase error and SQNR results for seven tests. As discussed in the section above the amplitude and phase for all of the tests was zero. The frequency of the carrier, 1 MHz, can be calculated using equation 30 with the clock period, granularity, and step equal to 125 ns, 2, and 1, respectively. The SQNR can also be seen on the far right of the table. As the number of input bits is increased the SQNR also increases.

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Measured Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilbert Transform</td>
<td>DDS Amplitude</td>
</tr>
<tr>
<td>Test Number</td>
<td>NI</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 3 – DDS Amplitude and Phase Error and Signal to Quantization Noise
<table>
<thead>
<tr>
<th>Test Number</th>
<th>NI</th>
<th>NC</th>
<th>NT</th>
<th>Measured Freq</th>
<th>Mag</th>
<th>Measured Freq</th>
<th>Mag</th>
<th>SQNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0728</td>
<td>3.E+06</td>
<td>0.7813</td>
<td>20.61</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0894</td>
<td>3.E+06</td>
<td>0.8027</td>
<td>19.06</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0880</td>
<td>3.E+06</td>
<td>0.7900</td>
<td>19.06</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0852</td>
<td>3.E+06</td>
<td>0.7645</td>
<td>19.06</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0728</td>
<td>3.E+06</td>
<td>0.7813</td>
<td>20.61</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>12</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0894</td>
<td>3.E+06</td>
<td>0.8027</td>
<td>19.06</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>12</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0880</td>
<td>3.E+06</td>
<td>0.7900</td>
<td>19.06</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>12</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0852</td>
<td>3.E+06</td>
<td>0.7645</td>
<td>19.06</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>16</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0728</td>
<td>3.E+06</td>
<td>0.7813</td>
<td>20.61</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>16</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0894</td>
<td>3.E+06</td>
<td>0.8027</td>
<td>19.06</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>16</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0880</td>
<td>3.E+06</td>
<td>0.7900</td>
<td>19.06</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>16</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0852</td>
<td>3.E+06</td>
<td>0.7645</td>
<td>19.06</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>24</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0728</td>
<td>3.E+06</td>
<td>0.7813</td>
<td>20.61</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>24</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0894</td>
<td>3.E+06</td>
<td>0.8027</td>
<td>19.06</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>24</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0880</td>
<td>3.E+06</td>
<td>0.7900</td>
<td>19.06</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>24</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0852</td>
<td>3.E+06</td>
<td>0.7645</td>
<td>19.06</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>8</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0414</td>
<td>3.E+06</td>
<td>0.9401</td>
<td>27.12</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>8</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0047</td>
<td>3.E+06</td>
<td>0.9674</td>
<td>46.33</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>8</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0053</td>
<td>3.E+06</td>
<td>0.9578</td>
<td>45.17</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>8</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0051</td>
<td>3.E+06</td>
<td>0.9268</td>
<td>45.15</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0337</td>
<td>3.E+06</td>
<td>0.9478</td>
<td>28.98</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>12</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0047</td>
<td>3.E+06</td>
<td>0.9674</td>
<td>46.33</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>12</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0043</td>
<td>3.E+06</td>
<td>0.9559</td>
<td>46.95</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>12</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0051</td>
<td>3.E+06</td>
<td>0.9268</td>
<td>45.15</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>16</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0337</td>
<td>3.E+06</td>
<td>0.9478</td>
<td>28.98</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>16</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0074</td>
<td>3.E+06</td>
<td>0.9636</td>
<td>42.34</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>16</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0043</td>
<td>3.E+06</td>
<td>0.9559</td>
<td>46.95</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>16</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0042</td>
<td>3.E+06</td>
<td>0.9250</td>
<td>46.94</td>
</tr>
<tr>
<td>29</td>
<td>8</td>
<td>24</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0337</td>
<td>3.E+06</td>
<td>0.9478</td>
<td>28.98</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>24</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0074</td>
<td>3.E+06</td>
<td>0.9636</td>
<td>42.34</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>24</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0043</td>
<td>3.E+06</td>
<td>0.9559</td>
<td>46.95</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>24</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0042</td>
<td>3.E+06</td>
<td>0.9250</td>
<td>46.94</td>
</tr>
<tr>
<td>33</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0462</td>
<td>3.E+06</td>
<td>0.9489</td>
<td>26.25</td>
</tr>
<tr>
<td>34</td>
<td>16</td>
<td>8</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0072</td>
<td>3.E+06</td>
<td>0.9762</td>
<td>42.66</td>
</tr>
<tr>
<td>35</td>
<td>16</td>
<td>8</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0005</td>
<td>3.E+06</td>
<td>0.9682</td>
<td>65.75</td>
</tr>
<tr>
<td>36</td>
<td>16</td>
<td>8</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0005</td>
<td>3.E+06</td>
<td>0.9370</td>
<td>65.47</td>
</tr>
<tr>
<td>37</td>
<td>16</td>
<td>12</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0384</td>
<td>3.E+06</td>
<td>0.9567</td>
<td>27.93</td>
</tr>
<tr>
<td>38</td>
<td>16</td>
<td>12</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0091</td>
<td>3.E+06</td>
<td>0.9742</td>
<td>40.59</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>12</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0042</td>
<td>3.E+06</td>
<td>0.9635</td>
<td>47.16</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>12</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0013</td>
<td>3.E+06</td>
<td>0.9351</td>
<td>56.97</td>
</tr>
<tr>
<td>41</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0386</td>
<td>3.E+06</td>
<td>0.9565</td>
<td>27.89</td>
</tr>
<tr>
<td>42</td>
<td>16</td>
<td>16</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0093</td>
<td>3.E+06</td>
<td>0.9740</td>
<td>40.36</td>
</tr>
<tr>
<td>43</td>
<td>16</td>
<td>16</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0043</td>
<td>3.E+06</td>
<td>0.9634</td>
<td>46.92</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
<td>16</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0019</td>
<td>3.E+06</td>
<td>0.9346</td>
<td>53.98</td>
</tr>
<tr>
<td>45</td>
<td>24</td>
<td>8</td>
<td>17</td>
<td>1.E+06</td>
<td>0.0462</td>
<td>3.E+06</td>
<td>0.9489</td>
<td>26.25</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>8</td>
<td>65</td>
<td>1.E+06</td>
<td>0.0072</td>
<td>3.E+06</td>
<td>0.9762</td>
<td>42.64</td>
</tr>
<tr>
<td>47</td>
<td>24</td>
<td>8</td>
<td>129</td>
<td>1.E+06</td>
<td>0.0005</td>
<td>3.E+06</td>
<td>0.9683</td>
<td>65.95</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>8</td>
<td>257</td>
<td>1.E+06</td>
<td>0.0005</td>
<td>3.E+06</td>
<td>0.9370</td>
<td>65.66</td>
</tr>
</tbody>
</table>

Table 4 – DSSM output results for mixed HT parameters
DSSM Parameterization Point Effects

The table above, Table 4, shows the DSSM output for the initial test sets where the HT parameters have been varied. It can be seen for every test case that the input was properly modulated to the correct frequency of 3 MHz. The next highest frequency peak is at 1 MHz which is the carrier frequency generated by the DDS and is considered the height of the noise floor. The chart below, Figure 17, was created using Table 3 above. It can be seen that as the number of input bits increase, the SQNR values also increase. With 4 bits on the input the SQNR level remained fairly flat with an average of 19.45 dB for all 16 tests. The largest amplitude and phase error recorded with four input bits occurred when there were 17 taps, but this also produced the largest SQNR values. When the number of input bits increases above 4 bits, 17 taps produce the smallest SQNR values. For tests 17 through 32, 8 input bits, the SQNR increases to an average of 41.35. If we exclude the 17 tap results this average increases to 45.63 dB, which is very close to the theoretical limit of 6 dB per input bit.

![DSSM Signal to Quantization Noise](image)

Figure 17 – DSSM Signal to Quantization Noise
These tests show functionality of the DSSM and its components. The HT was able to create a quadrature, Q, signal that was on average 90 degrees out of phase with the input signal while maintaining the magnitude. The signal generator was able to create the carrier signal for modulation without any magnitude or phase error and very reasonable SQNR values. The input was modulated to the proper frequency with one sideband and carrier signal eliminated creating a single sideband signal at the output. Additional test results follow that check the DSSM’s functionality with two tone input, the affects of windowing the Hilbert transform coefficients, and input frequency sweeps.

It is also important to note that with a low number of input bits and taps overflow did occur. This was seen in the HT output data when the quadrature signal was leading the in-phase signal, instead of lagging. The HT scaling factor (SC) was reduced in order to correct for this problem.

Two tone input

This test was completed to verify the ability of the DSSM to accept two input signals and properly modulate both of them. In the table below, Table 5, the left side has the input parameters and the right side has the output data. In each test the input signals were up converted so the expected output frequencies are the input plus the carrier frequency for both tones. It can be seen that in each test both input frequencies were properly modulated. The high spur signals are at the carrier frequency which is expected, except for test number 136. The high spur signal is at the lower sideband of the modulated 11 MHz input instead of at 10 MHz; the next highest spur signal was -42.39 dB at 10 MHz.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>f_1 (MHz)</th>
<th>f_2 (MHz)</th>
<th>NI</th>
<th>NC</th>
<th>NT</th>
<th>f_c (MHz)</th>
<th>Meas. Freq (MHz)</th>
<th>Mag</th>
<th>Meas. Freq (MHz)</th>
<th>Mag</th>
<th>Meas. Freq (MHz)</th>
<th>Mag</th>
<th>SQNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>16</td>
<td>65</td>
<td>3.5</td>
<td>6.5</td>
<td>0.374</td>
<td>10.5</td>
<td>0.385</td>
<td>3.5</td>
<td>0.048</td>
<td>-18.13</td>
</tr>
<tr>
<td>128</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>16</td>
<td>65</td>
<td>3.5</td>
<td>6.5</td>
<td>0.450</td>
<td>10.5</td>
<td>0.455</td>
<td>3.5</td>
<td>0.019</td>
<td>-27.52</td>
</tr>
<tr>
<td>129</td>
<td>3</td>
<td>7</td>
<td>16</td>
<td>16</td>
<td>65</td>
<td>3.5</td>
<td>6.5</td>
<td>0.451</td>
<td>10.5</td>
<td>0.456</td>
<td>3.5</td>
<td>0.025</td>
<td>-25.35</td>
</tr>
<tr>
<td>130</td>
<td>3</td>
<td>7</td>
<td>16</td>
<td>16</td>
<td>129</td>
<td>3.5</td>
<td>6.5</td>
<td>0.454</td>
<td>10.5</td>
<td>0.471</td>
<td>3.5</td>
<td>0.002</td>
<td>-45.85</td>
</tr>
<tr>
<td>131</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>65</td>
<td>5.0</td>
<td>15.0</td>
<td>0.411</td>
<td>10.0</td>
<td>0.414</td>
<td>5.0</td>
<td>0.056</td>
<td>-17.40</td>
</tr>
<tr>
<td>132</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>16</td>
<td>65</td>
<td>5.0</td>
<td>15.0</td>
<td>0.484</td>
<td>10.0</td>
<td>0.482</td>
<td>5.0</td>
<td>0.004</td>
<td>-40.97</td>
</tr>
<tr>
<td>133</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>65</td>
<td>5.0</td>
<td>15.0</td>
<td>0.487</td>
<td>10.0</td>
<td>0.485</td>
<td>5.0</td>
<td>0.005</td>
<td>-39.92</td>
</tr>
<tr>
<td>134</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>129</td>
<td>5.0</td>
<td>15.0</td>
<td>0.482</td>
<td>10.0</td>
<td>0.481</td>
<td>5.0</td>
<td>0.002</td>
<td>-45.99</td>
</tr>
<tr>
<td>135</td>
<td>11</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>65</td>
<td>10.0</td>
<td>21.0</td>
<td>0.397</td>
<td>30.0</td>
<td>0.423</td>
<td>10.0</td>
<td>0.072</td>
<td>-15.43</td>
</tr>
<tr>
<td>136</td>
<td>11</td>
<td>20</td>
<td>8</td>
<td>16</td>
<td>65</td>
<td>10.0</td>
<td>21.0</td>
<td>0.463</td>
<td>30.0</td>
<td>0.485</td>
<td>1.0</td>
<td>0.005</td>
<td>-39.21</td>
</tr>
<tr>
<td>137</td>
<td>11</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>65</td>
<td>10.0</td>
<td>21.0</td>
<td>0.465</td>
<td>30.0</td>
<td>0.487</td>
<td>10.0</td>
<td>0.005</td>
<td>-40.22</td>
</tr>
<tr>
<td>138</td>
<td>11</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>129</td>
<td>10.0</td>
<td>21.0</td>
<td>0.454</td>
<td>30.0</td>
<td>0.482</td>
<td>10.0</td>
<td>0.002</td>
<td>-48.07</td>
</tr>
</tbody>
</table>

Table 5 – Two Tone Input Test Results

The three tests with the lowest SQNR numbers have 4 input bits and the three highest have 16 input bits and 129 tap HT filters. Although, tests 132 and 136 with 8 input bits and 65 tap HT filters were able to achieve the highest SQNR per input bit at approximately 5 dB per bit. The next largest per bit rates of 4.5, 4.4, and 3.9 dB come from tests 127, 131, and 135 respectively with 4 input bits. Therefore, if a high SQNR is needed a larger amount of input bits may have to be used. If the emphasis is on maximizing the SQNR per input bit, then a lower number of 8 or 4 can be used.

Input Frequency Sweep

The final set of tests sweeps the input frequency across a range while maintaining the DSSM parameter settings to see if the output is maintained over that range. The SQNR value from each frequency point in the sweep is collected and plotted versus frequency to
show the variation and as with any filter there is expected to be some ripple across the passband. The input frequency is swept from 3 – 17 MHz at step increments of at 0.05f/2, 40 MHz sampling frequency, and 2.5 MHz carrier frequency. In actual hardware implementation the number of filter taps is generally low due to space requirement so in this test the values are kept below 25; 9, 13, 17, and 25.

The graph below, Figure 18, shows the DSSM SQNR results for each HT tap value where the number of input and HT coefficient bits is 4. The average SQNR for the 9, 13, 17, and 25 tap values is 17.42, 16.59, 16.75, and 16.8 dB, respectively.

![Graph showing DSSM SQNR results](image)

Figure 18 – DSSM SQNR Input Frequency Sweep, 4 Input & Coefficient bits

The average SQNR values were expected to increase as the number of taps increased but this is not the case. The decrease in SQNR averages with the increase in the tap values is caused by quantization error of the end tap values. The table below, Table 6, lists the tap number, floating point tap value, floating point scaled tap value, and the truncated scaled value for a 25 tap filter with 4 coefficient bits and a scaling value of 6. These values are
the same for the 9, 13, and 17 tap filter centered at the ±0.6366 floating point HT
coefficient values and minus the endpoint values depending on the number of taps.

<table>
<thead>
<tr>
<th>Tap</th>
<th>Floating Point HT Coefficients</th>
<th>Floating Point Scaled HT Coefficients</th>
<th>Truncated HT Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0579</td>
<td>-0.3472</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-0.0707</td>
<td>-0.4244</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-0.0909</td>
<td>-0.5457</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>-0.1273</td>
<td>-0.7639</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-0.2122</td>
<td>-1.2732</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>-0.6366</td>
<td>-3.8197</td>
<td>-4</td>
</tr>
<tr>
<td>13</td>
<td>0.6366</td>
<td>3.8197</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>0.2122</td>
<td>1.2732</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>0.1273</td>
<td>0.7639</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0.0909</td>
<td>0.5457</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>0.0707</td>
<td>0.4244</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0.0579</td>
<td>0.3472</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6 – Truncated Hilbert Transform Coefficients for 4 bits

The maximum truncated value is ±4 with 4 HT coefficient bits which does not leave
many quantization levels for the endpoints as they are forced to zero and one. The filter
with the lowest number of taps, 9, has effectively 4 tap values and each one has a
significant value but after 17 taps, all the end point tap values are zero.

The same test was performed for 8 input and HT coefficient bits. At several of the
frequency points in the sweep overflow had occurred in the HT filter. To correct for this
problem the scaling factor, equation 27, was further reduced by 18. The average SQNR
for the 9, 13, 17, and 25 tap values is 26.52, 23.22, 21.42, and 20 dB, respectively.
Figure 19 – DSSM SQNR Input Frequency Sweep, 8 Input & Coefficient bits

The error between the floating and fixed point HT coefficients was then calculated to get a better understanding of affects of the scaling factor, SC. Each floating point tap value was multiplied by SC and compared with the truncated HT coefficient. The error is taken as the absolute difference between those values. The total error for a 25 tap filter with 8 HT coefficient bits is 2.72, Table 7 below.

<table>
<thead>
<tr>
<th>Tap</th>
<th>Floating Point</th>
<th>Scaled Floating Point</th>
<th>Fixed Point</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0579</td>
<td>-7.29</td>
<td>-7</td>
<td>0.29</td>
</tr>
<tr>
<td>3</td>
<td>-0.0707</td>
<td>-8.91</td>
<td>-9</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>-0.0909</td>
<td>-11.46</td>
<td>-11</td>
<td>0.46</td>
</tr>
<tr>
<td>7</td>
<td>-0.1273</td>
<td>-16.04</td>
<td>-16</td>
<td>0.04</td>
</tr>
<tr>
<td>9</td>
<td>-0.2122</td>
<td>-26.74</td>
<td>-27</td>
<td>0.26</td>
</tr>
<tr>
<td>11</td>
<td>-0.6366</td>
<td>-80.21</td>
<td>-80</td>
<td>0.21</td>
</tr>
<tr>
<td>13</td>
<td>0.6366</td>
<td>80.21</td>
<td>80</td>
<td>0.21</td>
</tr>
<tr>
<td>15</td>
<td>0.2122</td>
<td>26.74</td>
<td>27</td>
<td>0.26</td>
</tr>
<tr>
<td>17</td>
<td>0.1273</td>
<td>16.04</td>
<td>16</td>
<td>0.04</td>
</tr>
<tr>
<td>19</td>
<td>0.0909</td>
<td>11.46</td>
<td>11</td>
<td>0.46</td>
</tr>
<tr>
<td>21</td>
<td>0.0707</td>
<td>8.91</td>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>23</td>
<td>0.0579</td>
<td>7.29</td>
<td>7</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 7 – Hilbert transform coefficient error; 8 bits, 25 taps
V. Conclusion

This design improves the state of the art by providing an inexpensive, long term, portable, and parameterizable VHDL solution which allows for rapid design and redesign of DSSMs. And as technology changes and ADC speeds increase this code transitions with it and allows designers to quickly design, re-design, prototype, and layout for ASIC fabrication. The digital single sideband modulator implemented using a Hilbert transform rapidly delivers digital circuits for FPGA or ASIC applications.

Future Work

The true test of any design is through actual implementation in a selected technology where it can undergo real world conditions. Through implementation the physical size requirements would be calculated which could then be further explored for tradeoffs such as the number of Hilbert transform taps or input or Hilbert transform coefficient bit size versus accuracy.

During simulation overflow occurred in the Hilbert transform quadrature signal which was apparent as the peak values rolled over. This was manually corrected for by reducing the scaling factor, equation 27 in section 3.1. It needs to be low enough to prevent overflow but high enough to enable the Q signal to reach the full scale two’s compliment values. An automated approach should be considered in the selection of the scaling factor to prevent overflow while realizing the full scale values to maximize the
signal to quantization noise. A larger number of HT filter taps could also minimize this issue but for the purposes of this research the values were kept to small realizable numbers.
Appendix A

VHDL Source Code

Hilbert Transform

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;
-- pragma synthesis_off
use IEEE.MATH_REAL.ALL;
use IEEE.STD_LOGIC_TEXTIO.ALL;
use STD.TEXTIO.ALL;
-- pragma synthesis_on

entity HILBERT is
 generic (
 NI : integer; -- # of input bits
 NC : integer; -- coefficient bit size
 NT : integer; -- # of taps -- (NT-1)/2 must be even
 NE : integer; -- extra bits for + -- set to ceil(log_2(((NT-1)/2)))
 WIN : integer); -- window selection for HT
 port (
 SI : in std_logic_vector(NI-1 downto 0); --input signal
 CLK: in std_logic; --Clock
 SD : out std_logic_vector(NI-1 downto 0); --(I) original 'delayed' output signal
 SO : out std_logic_vector(NI-1 downto 0)); --(Q) modified output signal
end HILBERT;

architecture Behavioral of HILBERT is

--array of size NT to hold HT coefficients of size NC
type HTC_ARRAY is array (NT-1 downto 0) of std_logic_vector(NC-1 downto 0);
--array of size NT to hold input bit coefficients of size NI
type INPUT_ARRAY_TYPE is array (NT-1 downto 0) of std_logic_vector(NI-1 downto 0);
type III_TYPE is array (0 to NT) of integer;
type A_ARRAY_TYPE is array (NT-1 downto 0) of integer;
type R_ARRAY_TYPE is array (NT-1 downto 0) of real;
signal COEFF_ARRAY: HTC_ARRAY; --hold HT coefficients
signal INPUT_ARRAY: INPUT_ARRAY_TYPE; --hold input
signal III : III_TYPE;
signal A: A_ARRAY_TYPE;
signal SR_ARRAY, WC: R_ARRAY_TYPE := (0.0, others => 0.0);
signal SC : real := 0.0;
constant PI : real := 3.14159265; -- pi
file OUT_FILE: text is out "coefficients.xls";

begin

-- Capture Inputs in a clocked array ... Input signal SI
INPUT: process (CLK)
begin
if rising_edge(CLK) then
 for n in NT -1 downto 1 loop
 INPUT_ARRAY(n) <= INPUT_ARRAY(n-1);
 end loop;
 INPUT_ARRAY(0) <= SI;
end if;
end process INPUT;

-- delayed input to match output
DELAY: process (CLK,INPUT_ARRAY)
begin
if rising_edge(CLK) then
 SD <= INPUT_ARRAY((NT-1)/2);
end if;
end process DELAY;

SC <= real((2**NC)/2)-2.0;

--Generate the index for coefficients
III(0) <= 0;
Hilbert_Index: for I in 0 to NT-1 generate
 III(I+1) <= III(I)+1; -- III has the same value as index I
end generate Hilbert_Index;

WIN_Coef: for H in 0 to NT-1 generate

 WC(H) <= 1.0 --Rectangular
 when WIN=1 else
\[
2.0 \cdot \text{real}(H)/(\text{real}(NT)-1.0)
\]
when (WIN=2 and H<=(NT-1)/2) else
\[
2.0-(2.0 \cdot \text{real}(H)/(\text{real}(NT)-1.0))
\]
when (WIN=2 and H>(NT-1)/2) else
\[
0.5-0.5 \cdot \text{cos}(2.0 \cdot \text{PI} \cdot \text{real}(H)/(\text{real}(NT)-1.0))
\]
when WIN=3 else
\[
0.54-0.46 \cdot \text{cos}(2.0 \cdot \text{PI} \cdot \text{real}(H)/(\text{real}(NT)-1.0))
\]
when WIN=4 else
\[
0.42-0.5 \cdot \text{cos}(2.0 \cdot \text{PI} \cdot \text{real}(H)/(\text{real}(NT)-1.0))+\]
\[
0.08 \cdot \text{cos}(4.0 \cdot \text{PI} \cdot \text{real}(H)/(\text{real}(NT)-1.0))
\]
end generate WIN_Coef;

--Generate the Hilbert Coefficients
Hilbert_Coefs: for I in 0 to NT-1 generate
hil_cell: if (I rem 2) /= 0 generate
\[
A(I) <=
\]
\[
\text{integer}(\]
\[
\begin{align*}
& WC(I) \cdot SC \cdot 2.0/\text{PI}/ \\
& \text{real}(III(I)-((NT-1)/2))* \\
& \sin(\text{PI} \cdot \text{real}(III(I)-((NT-1)/2))/2.0)* \\
& \sin(\text{PI} \cdot \text{real}(III(I)-((NT-1)/2))/2.0)
\end{align*}
\]
\)
\]
COEFF_ARRAY(I)<=conv_std_logic_vector(A(I),NC);
\[
SR_ARRAY(I) <=
\]
\[
\begin{align*}
& WC(I) \cdot 2.0/\text{PI}/ \\
& \text{real}(III(I)-((NT-1)/2))* \\
& \sin(\text{PI} \cdot \text{real}(III(I)-((NT-1)/2))/2.0)* \\
& \sin(\text{PI} \cdot \text{real}(III(I)-((NT-1)/2))/2.0)
\end{align*}
\]
\)
end generate hil_cell;
end generate Hilbert_Coefs;

process (CLK,INPUT_ARRAY)
variable MULT_VAL: std_logic_vector(NC+NI+NE-1 downto 0);
variable SI_SUM: std_logic_vector(NC+NI+NE-1 downto 0);
variable SR_SUM: real;
begin
if rising_edge(CLK) then
\[
\begin{align*}
& \text{SR}_\text{SUM}:=0.0; \quad \text{-- real values} \\
& \text{SI}_\text{SUM}:= (\text{others}=>'0'); \\
& \text{--Enter incoming data into array & multiply by HCoeffs}
\end{align*}
\]
end if;
end process;
for n in NT-1 downto 0 loop
 if (n rem 2) /= 0 then
 MULT_VAL(NC+NI-1 downto 0) := INPUT_ARRAY(n)*COEFF_ARRAY(n); -- NI+NC bits
 MULT_VAL(NC+NI+NE-1 downto NC+NI) := (others => MULT_VAL(NC+NI-1)); -- sign extend
 SI_SUM := SI_SUM + MULT_VAL(NC+NI-1 downto 0); -- clac integer final
 SR_SUM := SR_SUM + real(conv_integer(MULT_VAL(NC+NI-1 downto 0))); -- clac real final
 end if;
end loop;
SO <= SI_SUM(NC+NI-2 downto NC-1);
end if;
end process;

process(III)
 variable OUT_LINE: line;
 variable COEF_VALUE: real;
begin
 if III(NT) = NT then
 for I in 0 to NT-1 loop
 if (I rem 2) /= 0 then
 COEF_VALUE := 2.0/PI/(real(I)-real((NT-1)/2))*
 sin(PI*real(I-(NT-1)/2)/2.0)*
 sin(PI*real(I-(NT-1)/2)/2.0);
 --start of OUT_FILE 'coefficients.txt'
 if I = 1 then
 write(OUT_LINE,string('I III COEF_VALUE SR_ARRAY Ai/SC Ai C_A C_A C_A/SC WIN WC'));
 end if;
 writeln(OUT_FILE, OUT_LINE);
 write(OUT_LINE, I);
 write(OUT_LINE,string(' '));
 write(OUT_LINE, III(I));
 write(OUT_LINE,string(' '));
 write(OUT_LINE, COEF_VALUE);
 write(OUT_LINE,string(' '));
 write(OUT_LINE, SR_ARRAY(I));
 write(OUT_LINE,string(' '));
 write(OUT_LINE, real(A(I))/SC);
 write(OUT_LINE,string(' '));
 write(OUT_LINE, A(I));
 write(OUT_LINE,string(' '));
 write(OUT_LINE, COEFF_ARRAY(I));
 write(OUT_LINE,string(' '));
 end if;
 end loop;
 end if;
end process;
write(OUT_LINE, conv_integer(COEFF_ARRAY(I))); write(OUT_LINE,string(" "))); write(OUT_LINE, real(conv_integer(COEFF_ARRAY(I))/SC)); write(OUT_LINE,string(" "))); write(OUT_LINE, WIN); write(OUT_LINE,string(" "))); write(OUT_LINE, WC(I)); writeln(OUT_FILE, OUT_LINE);
end if;
end loop;
end if;
end process;

--
end Behavioral;

Sine and Cosine Wave Generation

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.STD_LOGIC_TEXTIO.ALL;
use STD.TEXTIO.ALL;

--
entity HS_Switch is
 generic (
 NI : integer; -- # of input bits
 NC : integer; -- # of coefficient bits
 RG : integer; -- 1/4 wave granularity
 R_STEP : integer); -- # of ROM address steps to skip
 port (
 CLK: in std_logic; --Clock
 SINE : out std_logic_vector(NI-1 downto 0); -- Sine wave output
 COSINE : out std_logic_vector(NI-1 downto 0)); -- Cosine wave output
end HS_Switch;

architecture Behavioral of HS_SWITCH is

 type QW is array (0 to RG) of std_logic_vector(NI-1 downto 0);
signal Q_WAVE : QW; -- array type to hold 1/4 wave

type R_QW is array (0 to RG) of real; -- real array of 1/4 wave for comparison
signal RQW, RQW_SC : R_QW := (0.0, others => 0.0); -- real 1/4 wave for comparison
type QWINT_ARRAY is array (RG downto 0) of integer;
signal QW_INT : QWINT_ARRAY;
type III_array is array (0 to RG) of integer;
signal III : III_array;
signal SC, WI : real := 0.0;
signal Q_SSEC : integer := 1;
signal Q_CSEC : integer := 1;
signal INDEX: integer := 0;
signal HSS_S : integer := 0;
signal HSS_C : integer := RG;
constant PI : real := 3.14159265; -- pi

file OUT_FILE: text is out "quarter_wave.xls";

begin

SC <= real(2**(NI-1))-1.0;
--Generate the index for coefficients
III(0) <= 0;
HSS_Index: for I in 0 to RG-1 generate
 III(I+1) <= III(I)+1; -- III has the same value as index I
end generate HSS_Index;
--Generate the 1/4 wave values
Quarter_Wave: for I in 0 to RG generate

 QW_INT(I) <= integer(SC*sin((90.0/real(RG))*real(I)*(PI/180.0)));
 Q_WAVE(I) <= conv_std_logic_vector(QW_INT(I),NI);

-- type Real for comparison ---------
RQW(I) <= sin((90.0/real(RG))*real(I)*(PI/180.0));
RQW_SC(I) <= SC*sin((90.0/real(RG))*real(I)*(PI/180.0));

end generate Quarter_Wave;
-- SINE_WAVE: process(CLK)
variable temp, s_count, qw_ssec : integer := 0;
begin

s_count := HSS_S; -- 1/4 wave array index counter
qw_ssec := Q_SSEC; -- 1/4 wave section

if CLK'event and CLK='1' then
 if qw_ssec=1 or qw_ssec=3 then
 s_count := s_count + R_STEP; -- count up or down
 else
 s_count := s_count - R_STEP;
 end if;
 if s_count>=0 and s_count<=RG then
 if qw_ssec=1 or qw_ssec=2 then
 SINE <= Q_WAVE(s_count);
 if qw_ssec = 2 and s_count = 0 then
 qw_ssec := 3;
 end if;
 else
 SINE <= -Q_WAVE(s_count);
 if qw_ssec = 4 and s_count = 0 then
 qw_ssec := 1;
 end if;
 end if;
 end if;
elsif qw_ssec=1 or qw_ssec=3 then
 temp := s_count - RG;
 s_count := RG - temp;
 if qw_ssec = 1 then
 SINE <= Q_WAVE(s_count);
 else
 SINE <= -Q_WAVE(abs(s_count));
 end if;
 qw_ssec := qw_ssec + 1;
 if (s_count=0 or s_count=RG) and R_STEP>RG then
 qw_ssec := qw_ssec+1;
 end if;
else -- qw_ssec=2 or 4 & outside of the 1/4 wave section
 temp := abs(s_count) - RG;
 s_count := RG - abs(temp);
 if qw_ssec = 2 then
 SINE <= -Q_WAVE(s_count);
 else
 SINE <= Q_WAVE(s_count);
 end if;
end if;
qw_ssec := qw_ssec +1;
if (s_count=0 or s_count=RG) and R_STEP>RG then
 qw_ssec := qw_ssec+1;
end if;
end if;

if qw_ssec > 4 then
 qw_ssec := qw_ssec mod 4;
end if;

HSS_S <= s_count;
Q_SSEC <= qw_ssec;
end if;
end process SINE_WAVE;

COSINE_WAVE: process(CLK)
 variable temp, c_count, qw_csec : integer := 0;
begin
 c_count := HSS_C;
 qw_csec := Q_CSEC;
 if CLK'event and CLK='1'then
 -- if CLK'event then
 if qw_csec=2 or qw_csec=4 then
 c_count := c_count + R_STEP;
 else
 c_count := c_count - R_STEP;
 end if;
 if c_count>=0 and c_count<=RG then
 if qw_csec=1 or qw_csec=4 then
 COSINE <= Q_WAVE(c_count);
 end if;
 if qw_csec = 1 and c_count = 0 then
 qw_csec := 2;
 end if;
 else
 COSINE <= -Q_WAVE(c_count);
 if qw_csec = 3 and c_count = 0 then
 qw_csec := 4;
 end if;
 end if;
 elsif qw_csec=2 or qw_csec=4 then
 temp := c_count - RG;
 end if;
end process COSINE_WAVE;
c_count := RG - abs(temp);
if qw_csec = 4 then
 COSINE <= Q_WAVE(c_count);
else
 COSINE <= -Q_WAVE(c_count);
end if;
qw_csec := qw_csec + 1;
if (c_count=0 or c_count=RG) and R_STEP>RG then
 qw_csec := qw_csec+1;
end if;
else
 temp := abs(c_count) - RG;
c_count := RG - abs(temp);
if qw_csec = 1 then
 COSINE <= -Q_WAVE(c_count);
else
 COSINE <= Q_WAVE(c_count);
end if;
qw_csec := qw_csec +1;
if (c_count=0 or c_count=RG) and R_STEP>RG then
 qw_csec := qw_csec+1;
end if;
end if;

if qw_csec > 4 then
 qw_csec := qw_csec mod 4;
end if;

HSS_C <= c_count;
Q_CSEC <= qw_csec;
end if;
end process COSINE_WAVE;

--Generate output for quarter_wave file

process(III)
 variable OUT_LINE: line;
 variable Inc: real;
 variable J: integer;
begin
 if III(RG) = RG then
 for T in 0 to RG loop
 Inc := sin((90.0/real(RG))*real(T)*(PI/180.0));
 if T = 0 then


```vhdl
write(OUT_LINE,string("Index SC Incram RQW RQW_SC QW_INT Q_WAVE Q_WAVE"));
write(OUT_LINE,string(" "));
writeline(OUT_FILE, OUT_LINE);
end if;
write(OUT_LINE, T);
write(OUT_LINE,string(" "));
write(OUT_LINE, SC);
write(OUT_LINE,string(" "));
write(OUT_LINE, Inc);
write(OUT_LINE,string(" "));
write(OUT_LINE, RQW(T));
write(OUT_LINE,string(" "));
write(OUT_LINE, RQW_SC(T));
write(OUT_LINE,string(" "));
write(OUT_LINE, QW_INT(T));
write(OUT_LINE,string(" "));
write(OUT_LINE, conv_integer(Q_WAVE(T)));
write(OUT_LINE,string(" "));
J:= NI-1;
S_W: while J > -1 loop
  write(OUT_LINE, conv_integer(Q_WAVE(T)(J)));
  J := J - 1;
end loop S_W;
  writeline(OUT_FILE, OUT_LINE);
end loop;
end if;
end process;

end Behavioral;

Multiply and Adder Block

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;
use IEEE.MATH_REAL.ALL;
use IEEE.STD_LOGIC_TEXTIO.ALL;
use STD.TEXTIO.ALL;

entity DSSM_OUT is
```
generic (
 NI : integer); -- # of input bits
port (
 CLK: in std_logic; --Clock
 SD : in std_logic_vector(NI-1 downto 0); --(I) original 'delayed' output signal
 SO : in std_logic_vector(NI-1 downto 0); --(Q) modified output signal
 SINE : in std_logic_vector(NI-1 downto 0); -- Sine wave output
 COSINE : in std_logic_vector(NI-1 downto 0); -- Cosine wave output
 DSSM : out std_logic_vector(NI-1 downto 0));
end DSSM_OUT;

architecture Behavioral of DSSM_OUT is
begin

FINAL_OUT: process(CLK)
variable MIX: std_logic_vector((2*NI)-1 downto 0);
begin

MIX:=(SD*COSINE)-(SO*SINE);
DSSM <= MIX((2*NI)-2 downto (NI-1));

end process FINAL_OUT;

end Behavioral;

Testbench
library ieee, WORK;
use std.textio.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
use ieee.math_real.all;

disclaimer
NT : integer := 9; -- # of taps -- (NT-1)/2 must be even
NE : integer := 2; -- extra bits for + -- set to ceil(log_2(((NT-1)/2)))
WIN : integer := 1; -- Window selection for HT
RG : integer := 2; -- 1/4 wave granularity
R_STEP : integer := 1; -- ROM address step
-- NOTE -- R_STEP must be <= RG
N_ITS : integer := 10001; -- number of test sets
CP : time := 25.0ns;
CPR : real := 25.0e-9;
f1 : real := 3.0e6;
f2 : real := 3.0e6;
P1 : real := 0.0; -- [dB] power levels
P2 : real := 0.0 -- [dB] power levels
);
end ;

architecture TB of TB_DSSM is
constant PI : real := 3.14159265; -- pi
file OUT_FILE: text is out "sim_out.xls";
file OUT_FILE2: text is out "sim_out_IQ.xls";
file OUT_FILE3: text is out "HSS_OUT.xls";
file OUT_FILE4: text is out "DSSM_OUT.xls";
file OUT_FILE5: text is out "Spectral_OUT.xls";

component HILBERT
generic (
 NI : integer; -- # of input bits
 NC : integer; -- coefficient bit size
 NT : integer; -- (NT-1)/2 must be even
 NE : integer; -- set to ceil(log_2(((NT-1)/2)))
 WIN: integer);
-- window selection for HT
port (
 SI : in std_logic_vector(NI-1 downto 0); --input signal
 CLK: in std_logic; --Clock
 SD : out std_logic_vector(NI-1 downto 0); --(I) original 'delayed' output signal
 SO : out std_logic_vector(NI-1 downto 0)); --(Q) modified output signal
end component;

component HS_Switch
generic (
 NI : integer; -- # of input bits
 NC : integer; -- coefficient bit size
 RG : integer; -- 1/4 wave granularity
 R_STEP : integer); -- ROM address step
port (
 CLK: in std_logic; --Clock
SINE : ou std_logic_vector(NI-1 downto 0); -- SINE wave
COSINE : out std_logic_vector(NI-1 downto 0)); -- COSINE wave
end component;

component DSSM_OUT
generic (
 NI : integer); -- # of input bits
port (
 CLK: in std_logic; --Clock
 SD : in std_logic_vector(NI-1 downto 0); --(I) original 'delayed' output signal
 SO : in std_logic_vector(NI-1 downto 0); --(Q) modified output signal
 SINE : in std_logic_vector(NI-1 downto 0); -- Sine wave output
 COSINE : in std_logic_vector(NI-1 downto 0); -- Cosine wave output
 DSSM : out std_logic_vector(NI-1 downto 0));
end component;

type TYPE_INPUT_ARRAY is array(0 to N_ITS) of std_logic_vector(NI-1 downto 0);
type TYPE_REAL_ARRAY is array(0 to N_ITS) of real;
type TYPE_QWAVAL is array (1 to 50)of real;
signal INPUT_V: TYPE_INPUT_ARRAY;
signal CLK : std_logic;
signal INDEX : integer := 0;
signal ADC, SO, SD, SINE, COSINE : std_logic_vector(NI-1 downto 0);
signal DSSM : std_logic_vector(NI-1 downto 0);
signal AmpAv1, PhaseAv1, RunAA, RunPA, RunWAA, RunWPA: real := 0.0; --Hold 1st diff value for averaging
signal SAA1, PA1, SAE1, PAE1:real:=0.0; -- Hold 1st values for averaging
signal AmpE1, PhaseE1, RunAE, RunPE : real := 0.0;
signal IWA_array, IWP_array, WGWA_array, WGWP_array : TYPE_QWAVAL := (0.0, others => 0.0);
signal VAD, VPD, VWAD, VWPD, RWAE, RWPE: real := 0.0;
signal Adiff, Pdiff, WGAdiff, WGPdiff:real:=0.0;

begin
COMP_HIL: HILBERT
 generic map (NI=>NI,Nc=>NC,NT=>NT,NE=>NE,WIN=>WIN)
 port map (SI=>ADC,CLK=>CLK,SO=>SO,SD=>SD);

COMP_SWITCH: HS_Switch
 generic map (NI=>NI,Nc=>NC,RG=>RG,R_STEP=>R_STEP)
 port map (CLK=>CLK,SINE=>SINE,COSINE=>COSINE);

COMP_MaA: DSSM_OUT
 generic map (NI=>NI)
 port map
 (CLK=>CLK,SINE=>SINE,COSINE=>COSINE,SO=>SO,SD=>SD,DSSM=>DSSM);
CLK_PROC: process
begin
 wait for CP/2;
 CLK <= '0';
 wait for CP/2;
 CLK <= '1';
end process CLK_PROC;

INPUT: process(CLK)
variable Z:integer:=0;
begin
 if CLK'event and CLK='1' then
 ADC <= INPUT_V(INDEX);
 if INDEX = N_ITS-1 then
 INDEX <= 0;
 else
 INDEX <= INDEX + 1;
 end if;
 end if;
end process INPUT;

FFT_PROC: process
variable W1,W2,A1,A2,Amax,P_dym,fsample:real:=1.0; -- amplitudes
variable S_REAL,VAL_COMP,VAL_DIV : real;
variable H,J, K, npqw, WGQW: integer;
variable Iamp, Qamp, Ip, Qp, Amp_Err, Phase_Err:real:=0.0;
variable Samp, Camp, Soph, Coph, WGA_Err, WGP_Err:real:=0.0;
variable INPUT_R: TYPE_REAL_ARRAY;
variable S_VECTOR : TYPE_INPUT_ARRAY;
variable OUT_LINE: line;
variable freq, period_ofreq, PPP, WG_PPP, RAA, RPA: real := 0.0;
variable RWAA, RWPA: real :=0.0;
begin
 fsample := 1.0/real(CPR);

--generate input data -----------------
 P_dym := P1 - P2;
 A2 := Amax / (1.0 + exp(P_dym/10.0));
 A1 := Amax-A2;
 W1 := 2.0 * PI * real(f1);
 W2 := 2.0 * PI * real(f2);
--start of OUT_FILE 'sim_out.txt'
write(OUT_LINE,1.0/CPR);
write(OUT_LINE,string(" "));
write(OUT_LINE,f1);
write(OUT_LINE,string(" "));
write(OUT_LINE,A1);
write(OUT_LINE,string(" "));
write(OUT_LINE,W1);
write(OUT_LINE,string(" "));
write(OUT_LINE,f2);
write(OUT_LINE,string(" "));
write(OUT_LINE,A2);
write(OUT_LINE,string(" "));
write(OUT_LINE,W2);
writeline(OUT_FILE, OUT_LINE);

K:= 0;
WH_LOOPK0: while K < N_ITS-1 loop

S_REAL := A1*cos(W1*REAL(K)*CPR)+A2*cos(W2*REAL(K)*CPR);

-- n bit ADC
VAL_COMP := 0.0;
VAL_DIV := 0.0;
if S_REAL < VAL_COMP then S_VECTOR(K)(NI-1):='1';
 VAL_DIV:=0.5;
 VAL_COMP:=0.5;
else S_VECTOR(K)(NI-1):='0';
 VAL_DIV:=0.5;
 VAL_COMP:=0.5;
end if;

for IIII in 1 to NI-1 loop
if S_REAL < VAL_COMP then
 S_VECTOR(K)(NI-1-IIII):='0';
 VAL_DIV:=VAL_DIV/2.0;
 VAL_COMP:=VAL_COMP-abs(VAL_DIV);
else -- S_REAL >= VAL_COMP
 S_VECTOR(K)(NI-1-IIII):='1';
 VAL_DIV:=VAL_DIV/2.0;
 VAL_COMP:=VAL_COMP+abs(VAL_DIV);
end if;
end loop;

INPUT_V(K) <= S_VECTOR(K);
INPUT_R(K) := S_REAL;
K := K + 1;
end loop WH_LOOPK0;

72
K := 0;
WH_LOOPK1: while K < N_ITS-1 loop

--I&Q Amplitude Calculation
Iamp := real(conv_integer(SD))/(2.0**(NI-1));
Qamp := real(conv_integer(SO))/(2.0**(NI-1));
--Sine & Cosine Amplitude Calculation
Samp := real(conv_integer(Sine))/(2.0**(NI-1));
Camp := real(conv_integer(Cosine))/(2.0**(NI-1));
--I&Q Phase Calculation
Ip := arcsin(Iamp)*(180.0/PI);
Qp := arccos(Qamp)*(180.0/PI);
--Sine & Cosine Phase Calculation
Sop := arcsin(Samp)*(180.0/PI);
Coph := arccos(Camp)*(180.0/PI);

--Generate array to hold 1/4 wave amplitude values for accuracy check
freq := f1;
if f2 > f1 then
 freq := f2;
end if;
period_ofreq := 1.0/freq;
PPP := period_ofreq/CPR;
npqw := integer(PPP)/4;
WG_PPP := (CPR*((real(RG)*4.0)/real(R_STEP)))/CPR;
WGQW := integer(WG_PPP)/4;
if npqw < 1 then
 npqw := 1;
else
 for B in npqw downto 2 loop
 IWA_array(B) <= IWA_array(B-1);
 IWP_array(B) <= IWP_array(B-1);
 end loop;
end if;
if WGQW < 1 then
 WGQW := 1;
else
 for C in WGQW downto 2 loop
 WGWA_array(C) <= WGWA_array(C-1);
 WGWP_array(C) <= WGWP_array(C-1);
 end loop;
end if;
IWA_array(1) <= Iamp;
IWP_array(1) <= Ip;
WGWA_array(1) <= Camp;
WGWP_array(1) <= Coph;
Adiff <= abs(Qamp - IWA_array(npqw));
Pdiff <= abs(Qp + IWP_array(npqw));
WGAdiff <= abs(Samp - WGWA_array(WGQW));
WG PvPdiff <= abs(Soph + WGWP_array(WGQW));

--Amplitude & Phase error for the I & Q Channel
if IWA_array(npqw) = 0.0 then Amp_Err := (abs(Qamp)*100.0);
elsif Qamp = 0.0 then Amp_Err := (abs(IWA_array(npqw))*100.0);
else Amp_Err := (abs(IWA_array(npqw)-Qamp)/abs(IWA_array(npqw))*100.0);
end if;
Phase_Err := ((abs(90.0-Pdiff)/90.0)*100.0);

--Amplitude & Phase error for the Sine & Cosine
if WGWA_array(WGQW) = 0.0 then WGA_Err := (abs(Samp)*100.0);
elsif Samp = 0.0 then WGA_Err := (abs(WGWA_array(WGQW))*100.0);
else WGA_Err := (abs(WGWA_array(WGQW)-Samp)/abs(WGWA_array(WGQW))*100.0);
end if;
WGP_Err := ((abs(90.0-WGPdiff)/90.0)*100.0);

--Running Averages for Amplitude and Phase
--&.
--STD Deviation for Amplitude and Phase
if K = 500 then
AmpAv1 <= Adiff; PhaseAv1 <= Pdiff; --I & Q Avg diff
AmpE1 <= Amp_Err; PhaseE1 <= Phase_Err; --I & Q Avg err
SAA1 <= WGAdiff; PA1 <= WGPdiff; --S & C Avg diff
SAE1 <= WGA_Err; PAE1 <= WGP_Err; --S & C Avg err
elsif K = 501 then
RAA := (Adiff + AmpAv1)/2.0; --Avg amp diff
RPA := (Pdiff + PhaseAv1)/2.0; --Avg pha diff
RunAE <= (Amp_Err + AmpE1)/2.0; --Avg amp err
RunPE <= (Phase_Err + PhaseE1)/2.0; --Avg pha err
RWAA := (WGAdiff + SAA1)/2.0; --Avg amp diff
RWPA := (WGPdiff + PA1)/2.0; --Avg pha diff
RWAE := (WGA_Err + SAE1)/2.0; --Avg amp err
RWPE := (WGP_Err + PAE1)/2.0; --Avg pha err

--Variance of the I&Q amplitude difference
VAD <= (1.0/(real(K)+1.0))*((AmpAv1-RAA)**2.0+(Adiff-RAA)**2.0);
--Variance of the I&Q phase difference
VPD <= (1.0/(real(K)+1.0))*((PhaseAv1-RPA)**2.0+(Pdiff-RPA)**2.0);
--Variance of the S&C amplitude difference
VWAD <= (1.0/(real(K)+1.0))*((SAA1-RWAA)**2.0+(WGAdiff-RWAA)**2.0);
--Variance of the S&C phase difference
VWPD <= (1.0/(real(K)+1.0))*((PA1-RWPA)**2.0+(WGPdiff-RWPA)**2.0);

elsif K > 501 then
-- I&Q Values
RAA := (Adiff+real(K)*RunAA)/(real(K)+1.0); --Avg amp diff
RPA := (Pdiff+real(K)*RunPA)/(real(K)+1.0); --Avg pha diff
RunAE <= (Amp_Err+real(K)*RunAE)/(real(K)+1.0); --Avg amp err
RunPE <= (Phase_Err+real(K)*RunPE)/(real(K)+1.0); --Avg pha err
--Variance of the I&Q amplitude difference
VAD <= ((Adiff**2.0)/(real(K)+1.0))+(real(K)/(real(K)+1.0))*(VAD+RunAA**2.0)-(RAA**2.0);
--Variance of the I&Q phase difference
VAD <= ((Pdiff**2.0)/(real(K)+1.0))+(real(K)/(real(K)+1.0))*(VDP+RunPA**2.0)-(RPA**2.0);
-- S&C Values
RWAA := (WGAdiff+real(K)*RunWAA)/(real(K)+1.0); --Avg amp diff
RWPA := (WGPdiff+real(K)*RunWPA)/(real(K)+1.0); --Avg pha diff
RWAE <= (WGAErr+real(K)*RWAE)/(real(K)+1.0); --Avg amp err
RWPE <= (WGP_Err+real(K)*RWPE)/(real(K)+1.0); --Avg pha err
--Variance of the I&Q amplitude difference
VWAD <= ((WGAdiff**2.0)/(real(K)+1.0))+(real(K)/(real(K)+1.0))*(VWAD+RunWAA**2.0)-(RWAA**2.0);
--Variance of the I&Q phase difference
VWPD <= ((WGPdiff**2.0)/(real(K)+1.0))+(real(K)/(real(K)+1.0))*(VWPD+RunWPA**2.0)-(RWPA**2.0);
end if;
RunAA <= RAA;
RunPA <= RPA;
RunWAA <= RWAA;
RunWPA <= RWPA;

--continuation of OUT_FILE 'sim_out.txt'
if K = 0 then
write(OUT_LINE,string("INDEX INPUT_R INPUT_V INPUT_V ADC SD SD SO SO SO Iamp Qamp Adiff Ip Qp Pdiff Amp_Err Phase_Err RunAA RunAP RunAE RunAE RunPE VAD VPD"));
write(OUT_LINE,string(" "));
write(OUT_FILE, OUT_LINE);
end if;
write(OUT_LINE,INDEX);
write(OUT_LINE,string(" "));
write(OUT_LINE,INPUT_R(K));
write(OUT_LINE,string(" "));
J := NI-1;WH_LOOPJ2: while J > -1 loop
 write(OUT_LINE,conv_integer(INPUT_V(K)(J)));
 J := J - 1;
end loop WH_LOOPJ2;
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(INPUT_V(K)));
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(ADC));
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(SD));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(1) - 1.0)));
write(OUT_LINE,string(" "));
for J in NI-1 downto 0 loop
 write(OUT_LINE,conv_integer(SO(J)));
end loop;
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(SO));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(1) - 1.0)));
write(OUT_LINE,string(" "));
write(OUT_LINE,Iamp);
write(OUT_LINE,string(" "));
write(OUT_LINE,Qamp);
write(OUT_LINE,string(" "));
write(OUT_LINE,Pdiff);
write(OUT_LINE,string(" "));
write(OUT_LINE,Amp_Err);
write(OUT_LINE,string(" "));
write(OUT_LINE,Phase_Err);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunAA);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunPA);
write(OUT_LINE,string(" "));
write(OUT_LINE, RunAE);
write(OUT_LINE, string(" "));
write(OUT_LINE, RunPE);
write(OUT_LINE, string(" "));
write(OUT_LINE, VAD);
write(OUT_LINE, string(" "));
write(OUT_LINE, VPD);
if K = (N_ITS - 2) then
 writeln(OUT_FILE, OUT_LINE);
 write(OUT_LINE, string("RAAD RAAE AV RAPD RAPE PV"));
 writeln(OUT_FILE, OUT_LINE);
 write(OUT_LINE, RAA);
 write(OUT_LINE, string(" "));
 write(OUT_LINE, RunAE);
 write(OUT_LINE, string(" "));
 write(OUT_LINE, VAD);
 write(OUT_LINE, string(" "));
 write(OUT_LINE, RPA);
 write(OUT_LINE, string(" "));
 write(OUT_LINE, RunPE);
 write(OUT_LINE, string(" "));
 write(OUT_LINE, VPD);
end if;
writeln(OUT_FILE, OUT_LINE);

--start of OUT_FILE2 'sim_out_IQ.txt'
write(OUT_LINE, K);
write(OUT_LINE, string(" "));
write(OUT_LINE, conv_integer(SD));
write(OUT_LINE, string(" "));
write(OUT_LINE, conv_integer(SO));
writeln(OUT_FILE2, OUT_LINE);

--start of OUT_FILE3 "HSS_OUT.xls"
if K = 0 then
 write(OUT_LINE, string("Index SIN COS SIN COS SAmp CAmp ADiff SP CP PDiff AEerr PEerr RunAA RunAP RWAE RWPE VWAD VWPD"));
 write(OUT_LINE, string(" "));
 writeln(OUT_FILE3, OUT_LINE);
end if;
write(OUT_LINE, K);
write(OUT_LINE, string(" "));
for J in NI-1 downto 0 loop
 write(OUT_LINE, conv_integer(SINE(J)));
end loop;
write(OUT_LINE, string(" "));
for X in NI-1 downto 0 loop
 write(OUT_LINE,conv_integer(COSINE(X)));
end loop;
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(SINE));
write(OUT_LINE,string(" "));
write(OUT_LINE,conv_integer(COSINE));
write(OUT_LINE,string(" "));
write(OUT_LINE,Samp);
write(OUT_LINE,string(" "));
write(OUT_LINE,Camp);
write(OUT_LINE,string(" "));
write(OUT_LINE,WGAdiff);
write(OUT_LINE,string(" "));
write(OUT_LINE,Soph);
write(OUT_LINE,string(" "));
write(OUT_LINE,Coph);
write(OUT_LINE,string(" "));
write(OUT_LINE,WPAdiff);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunWAA);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunWPA);
write(OUT_LINE,string(" "));
write(OUT_LINE,RWAE);
write(OUT_LINE,string(" "));
write(OUT_LINE,RWPE);
write(OUT_LINE,string(" "));
write(OUT_LINE,VWAD);
write(OUT_LINE,string(" "));
write(OUT_LINE,VWPD);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunWAA);
write(OUT_LINE,string(" "));
write(OUT_LINE,WGA_Err);
write(OUT_LINE,string(" "));
write(OUT_LINE,VWAD);
write(OUT_LINE,string(" "));
write(OUT_LINE,RunWPA);
write(OUT_LINE,string(" "));
write(OUT_LINE,RWAE);
write(OUT_LINE,string(" "));
write(OUT_LINE,RWPE);
write(OUT_LINE,string(" "));
write(OUT_LINE,VWAD);
write(OUT_LINE,string(" "));
write(OUT_LINE,VWPD);
if K = (N_ITS-2) then
 writeline(OUT_FILE3, OUT_LINE);
 writeline(OUT_FILE3, OUT_LINE);
 write(OUT_LINE,RunWAA);
 write(OUT_LINE,RunWPA);
 write(OUT_LINE,RunWAA);
 write(OUT_LINE,WGA_Err);
 write(OUT_LINE,VWAD);
 write(OUT_LINE,RunWPA);
 --rolling average amplitude
 write(OUT_LINE,string(" "));
 write(OUT_LINE,WGA_Err);
 --amplitude error
 write(OUT_LINE,string(" "));
 write(OUT_LINE,VWAD);
 --amplitude variance
 write(OUT_LINE,string(" "));
 write(OUT_LINE,RunWPA);
 --rolling average phase
78
write(OUT_LINE,string(" ")); write(OUT_LINE,WGP_Err); --phase error
write(OUT_LINE,string(" ")); write(OUT_LINE,VWPD); --phase variance
end if;
writeline(OUT_FILE3, OUT_LINE);

--start of OUT_FILE4 "DSSM_OUT.xls"
write(OUT_LINE,K);
write(OUT_LINE,string(" "));
for H in NI-1 downto 0 loop
write(OUT_LINE,conv_integer(DSSM(H)));
end loop;
write(OUT_LINE,string(" ")); write(OUT_LINE,conv_integer(DSSM));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(conv_integer(DSSM))*2.0**((real(NI)-1.0))));
writeline(OUT_FILE4, OUT_LINE);

--start of OUT_FILE5 "Spectral_OUT.xls"
if K = 0 then
write(OUT_LINE,string("Index SD SO SIN COS OUT Freq Mag Complex"));
write(OUT_LINE,string(" "));
writeline(OUT_FILE5, OUT_LINE);
end if;
write(OUT_LINE,K);
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(conv_integer(SD))*2.0**((real(NI)-1.0))));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(conv_integer(SO)))*2.0**((real(NI)-1.0)));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(conv_integer(SINE)))*2.0**((real(NI)-1.0)));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(conv_integer(COSINE)))*2.0**((real(NI)-1.0)));
write(OUT_LINE,string(" "));
write(OUT_LINE,(real(K)*((1.0/CPR)/4096.0)));
writeline(OUT_FILE5, OUT_LINE);

-- end if;
wait until CLK'event and CLK = '1';
wait until CLK'event and CLK = '0';
K := K + 1;
end loop WH_LOOPK1;

assert (false) report "DONE *** DONE *** DONE " severity FAILURE;
end process FFT_PROC;

end TB;
REFERENCES

