I, Seth Davis, hereby submit this original work as part of the requirements for the degree of Master of Architecture in Architecture.

It is entitled:
The Urban Tent

Student's name: Seth Davis

This work and its defense approved by:

Committee chair: Udo Greinacher, M.Arch.
THE URBAN TENT

A thesis submitted to

the Division of Research and Advanced Studies
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

MASTER OF ARCHITECTURE

in the School of Architecture and Interior Design
of the College of Design, Architecture, Art, and Planning

2016

by

Seth Davis
B. Arch, University of Kentucky, 2013

Committee
Thesis Chair: Udo Greinacher
Thesis Member: Vincent Sansalo
Abstract

The home, what is it and what should it be? As the world changes so does context, and as context changes so does meaning. Architecture is ultimately subjective to the context society lays upon it at that time, constantly changing and in a state of flux. Society is now in the digital age. Communication and the exchange of information is valued higher and is more accessible than it ever has been. With this explosion of the digital connection comes a desire for physical connection. It is only human to feel the need to interact with each other on a personal level. The city grows. The demand for an urban lifestyle is now at an all-time high with society’s value being placed upon a digital revolution and a desire to live among new opportunities for their professional and personal lives that only the city can provide. As the city is flooded with people, architecture turns towards the approach of building more and more high rise skyscrapers, stealing away the city public space. Yet homes are empty a large portion of their existence. High rises are seen as the most efficient way to provide homes, but all we have done is created an optimized vacancy. These empty towers now stand in the way of public domain, taking up the most valuable space in the city. As a result, the public space is being eaten away by our personal domain stealing away from the larger urban fabric that we desired in the first place.

As a result of consistently adding skyscrapers, we have shrunk the city’s public space, rather: the city itself. The time has come that we must question the role of the home in relation to the context of the city. It must be asked why we sacrifice the public space in exchange for more individuals. Suppose architecture responded to this technological era and allowed the private domain to move aside until required. This result in giving space to home only when and where it needed. A tent that provides a temporary home for the user, but gives the space for
all the creatures of the earth when not used. In the same manner, the house must provide protection when needed. When you do not use your shoes or car, you don’t leave them in the middle of the floor or parked on a highway. You move them out of the realm of the public domain to allow for that space to be used, and so the home must perform in the same manner to better accommodate society in today’s age.
This page is left intentionally blank
Acknowledgements

To all my family and friends who have guided and supported me through the past seven years of challenges, successes, and this ultimate fulfillment of my lifelong dream.

I acknowledge, with gratitude, my debt of thanks to professor Udo Greinacher for his sincere advice and guidance.

Thanks also go to my fellow graduate students for their continuous encouragement of academic exploration.

I humbly extend my thanks to all concerned persons who co-operated with me in this regard.
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Illustrations
Introduction
Critique on Current Solutions
Professional Opinions
Central Questions
Precedents
Goals and Objectives
Design Strategies
 Site
 Movement
 Form
Endnotes
Bibliography
Illustration List

Introduction

Figure 1.1 http://www.pics4world.com/vb/nicecache/2/21392showing.jpg

Critique on Current Solutions

Figure 2.1 http://www.moorsmagazine.com/images22/tc118%20p.48_49.jpg

Professional Opinions

Figure 3.1
https://www.google.com/search?q=the+responsive+city&espv=2&biw=1701&bih=909&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi34IykosPLAhXCwYMKH2JCQM#q=Peter+Van+Den+Besselaar

Figure 3.2
https://www.google.com/search?q=beyond+transparency&espv=2&biw=1701&bih=909&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjtJbUo8PLAhXFnYMKHcUKBsQQ_AUICgE#q=Peter+Van+Den+Besselaar

Figure 3.3
https://i1.rgstatic.net/ii/profile.image/AS%3A272555219091462@1441993636251_l/Peter_Van_Den_Besselaar2.png

Figure 3.4 http://www.audacity.org/images/features/IA-16-03-08-C-MP-BD-obituary.jpg

Central Questions

Figure 4.1 http://i2.cdn.turner.com/cnn/dam/assets/150130152258-mobile-homes-rolling-masterplan-png-horizontal-gallery.png

Precedents

Figure 5.1 http://i.huffpost.com/gen/3517234/images/o-KASITA-facebook.jpg

Figure 5.2 http://assets.inhabitat.com/wp-content/blogs.dir/1/files/2015/10/Kasita-micro-apartment-5.jpg

Figure 5.3 http://f744808f726cacf8cc63-687eacbc6f6006dd252702cfebb7c3b4.r32.cf1.rackcdn.com/cblog_2970107458-thumbe.jpg
Goals and Objectives

Design Strategies

Movement

Figure 6.1 Author
Figure 6.2 Author
Figure 6.3 Author
Figure 6.4 Author
Figure 6.5 Author
Figure 6.6 Author
Figure 6.7 Author
Figure 6.8 Author

Site

Figure 6.9 Author
Figure 6.10 Author
Figure 6.11 https://i.ytimg.com/vi/_E_UgRd-AoQ/mqdefault.jpg
Figure 6.12 http://media.npr.org/assets/img/2015/11/02/interior_wide-2de3732fa252b05eae23f0e82e52ec13aa7367fa.jpg?s=6

Form

Figure 6.13 Author
Figure 6.14 Author
Figure 6.15 Author
Figure 6.16 Author

Endnotes

Bibliography
Introduction

Millennials seek an urban lifestyle and are often drawn to travel. Unfortunately moving is not easy. Anecdotally, I have moved every four months for the past three years of my life to take advantage of professional and social opportunities that different cities have offered. The time and effort of packing and unpacking is usually only matched by the frustration of being able to leave your current home and finding a new one. Between the inevitable need to enter into leases and sub-leases, or alternatively buy and sell property, people find the process so complicated and time consuming that it can seem nearly impossible to move. I believe that architecture must aid its user, not hinder them.

With people flocking to the city, comes another larger problem. The city is not utilizing its space in an appropriate manner to sustain the current ambitions of its population. Cities continue to densify for no personal or public benefit. The more outside population that funnel in, the more the city shrinks its public space to accommodate this growth. With one of the advantages of living in an urban city being its public connections, the more the city sacrifices public space, the more the city inadvertently damages itself. Private and public domain are struggling over the same real estate because architects are still applying non-sustainable urban design practices into our most valued over populated areas.

People move to cities for many reasons including opportunity, for jobs, to be around other people, and to be with each other. However, skyscrapers have continuously been designed to give the impression that building upward would allow for more population to inhabit the area.
Antithetical to this practice, skyscrapers are unoccupied a large portion of their life leading not to a densification of population but rather an optimized vacancy. The resultant cause and effect is the use of skyscrapers have created mass amounts of space in the most coveted areas, and therefore the most coveted space is going unused.

What if the private space was treated differently in urban conditions. If the desire of the city is to embrace the public than the private must adapt in a way that allows this. It is in the face of opposition that we must trust in the value of good design to create an innovative response. The response in this case is a creative proposal to treat these urban spaces like a drawer.

Figure 1.1: Shoes
Drawers provide space, but its contents are tucked away when they are not needed. They can be expanded and contracted to use as much space as needed - when it's needed, and nothing more. Treating private spaces like this would ensure the users would have the protection when needed but still embody the intent of the city embracing the public. When you are finished with your car, you do not leave it parked on the highway; it would hinder everyone else and be very selfish. When you are finished with your shoes, you do not leave them on the sidewalk or in the middle of the room; you put them away because the space they would be occupying has more importance and better roles to fill.

Not all space is created equal, and we must treat our most valuable space with respect. You do not take away from the public space with private space, because the entire reason you used your shoes or your car was to get to that more important space. Similarly, why would you take away from the public space, that you value highly, by wasting it with your private space?
Critique on Current Solutions

Currently our solution to densification is to build higher, treating every building the same regardless of the program inside, but have we created a solution or a compromise? Architecture is not a hermit crab that seeks a predefined shell for adaptation. We do not seek a cave and make due. The architect exists still does it not? Why do we bastardize our profession and neglect to create? At what point do we take back autonomy and reclaim our ambition to design? Surely there is more to urbanism than building taller and stuffing people into shelters like a piñata; surely architects still value space. Architects must design.

Figure 2.1 Mies Skyscraper
High rise apartments have been built to optimize our space within the urban context, however, all we have done is create optimized vacancy, because homes are unoccupied a large portion of their lives\[1\]. In our attempt to densify ourselves we have done the opposite, we have created empty shells in our most valued spaces. We have taken our public space and replaced it with the space for the individual.

These perversions of our intentions cannot continue to exist without evolving, for architecture must serve its people for the greater good. The home is our sanctuary of sacred space within the translucent public realm; it is the space the individual can claim as their own. However, idealizing one’s personal space is not in mutually beneficial to urbanism’s intentions. The home steals away the space from the public and gives it to the individual, stealing away from the urban context we desire. But what is the home to do if it is lost in a sea of public space; if it must exist but it must not infringe upon the public space, then what possible solution can there be? Can this shell we have created not be the cocoon to which we evolve?

Michael Bloomberg, former mayor of New York City, knows that there is no better way to improve the lives of billions of people around the world than to improve the way cities work. Steven Goldsmith speaks of many community leaders specifically including Bloomberg’s push towards data responsive design as well of many others in his book *The Responsive City* [1]. Not only does this text highlight many leaders in big data design but also identifies a few cities setting the standard, most notably Chicago. Recognizing the need for social media and big data science has spurred a sense of civic engagement in Chicago that’s causing the city to rethink its processes and design criteria. Goldsmith pushes the idea that “…the digital revolution encompasses more than how data is handled. It’s also a radical expansion of the sources of information.” Examples

in this book relate to cities using data to better address the overarching questions of quality of life, sustainability, resilience, social justice, and the life as the world continues to urbanize.

Bill Oakes cabinet chief of information in Boston said – “If you want to deliver great services to the people of this city, we have to do this differently. And technology is a critical part of it.”[1] Oake’s story in this book embodies what the architect must do: look forward and embrace a new approach to how we design space. The architect is after all, a public servant, a protector of the public’s well-being, and must utilize every resource possible.

Anthony Townsend looks at the advantages of big data design in his book *Smart Cities*. The text focuses on specific advantages of design shaping the new urban frontier through technology. [1] Like Goldsmith’s *The Responsive City*, Townsend uses his text to invite the idea of creative problem-solvers, including architects, to use data to rethink the structure of the city. The idea of using communication for device-to-device order to better streamline the city and to give technology multiple uses are a few of the larger points in this book. Completed projects include sensor-embedded streets and subways, interconnected metropolitan centers, the spread of wi-fi, and re-designed streetlights with multiple functions such as microphones. Townsend shows examples of urban renewal and innovation in cities around the globe, by rethinking how the city works. [1]

Townsend allows us a glimpse of the future of the architect by showing us the examples of the trailblazers of the big data design for all around the globe. [1] We have been given new
tools in our profession and more importantly a way to make new tools to design with. Integrating technology into design in crucial moving towards the future, creating a digital network provides in infrastructure of knowledge unheard of.

Brett Goldstien speaks of the importance of open data design within a city in his book *Beyond Transparency*. Much like Goldsmith, Goldstein is interested in the sparked innovation, driven efficiency, and fueled economic development open-source data design creates. *Beyond Transparency* features essays from over twenty of the world’s leading experts in a first of its kind instructive anthology about how open data is changing the face of public institutions and cities worldwide.

Goldstein believes that cities are operating well under their potential and open data design can be extremely impactful in the hands of creative problem solvers, such as architects. The relationship between the resident and local government is addressed to reshape the identity of civic life. Examples are shown of how communities and quality of life is improved through big data design at an architectural level.

Peter Van den Besselar is a leader in using open source information technologies in design in the Netherlands. His book *Digital Cities III* is a conglomeration of 25 full revised papers presented at the Third International Digitals Cities Workshop held in Amsterdam. These include case studies; virtual community platforms; knowledge and data modeling for digital cities; participation, design, and monitoring; and information and communications technology and social capital.[2]

Besselar states that “Digital cities constitutes a multidisciplinary field of research and development of communityware interact and collaborate with social scientists studying the use and effects of these kinds of infrastructures and systems in their local applications context.”[2] Fifty four authors compiled the thoughts and examples in this invaluable text in such a young field of research. Each text is independent in category, but speaks to the same context of benefiting from rethinking the way space is used. Each unique story relays the messages that architects have the opportunity to pick up a new set of tools to better perform.

Martin Pawley writes in his book *Terminal Architecture* of the future of the home. He describes clothes that deploy when needed. The machine has taken over in the future and all our current needs have been solved. Shelter, food, water, are not issues and it is something we do not needed to overstrain. It brings attention to what we desire as people outside of food water and shelter.\[1\] This is a phenomenal perspective as it shows what architecture should be outside of shelter.

He speaks of the idea that technology will eventually manipulate our perception of space and we could be in a capsule that projects a space that is an endless desert or mountain range. It is the way we use technology in the future that will define how we embrace architecture and it is when we accept it that we will begin to progress.\[1\] Architecture will become more like terminals, and that people themselves are like terminals. He believes the built environment must
be mobile or deployable: a capsule to accommodate a purpose over its voyage through public space.

As our lust for technology and connection grows, so does our desire to live in the urban context. Not only are we physically closer to each other but we are in the digital mecca where our opportunities outweigh our potential. Like rich soil to our forefathers, the city is our resource for potential that we seek. Every day, more people flock to the city with our desire for urban lifestyles being higher than any other time in history, but with this new density comes problems. Valuable spaces become compromised in the need for private space close to the valuable space. Meaning the more valuable the space - the more demand, the more the demand – the more the space is compromised to create private space in close proximity. Finally, the more private space created, the less of the original valued space is sustained.

Central Questions

Open source design can be incredibly beneficial to a city at urban scale with current technology, but what about at an architectural scale? What happens when architecture begins to address similar issues at a single building scale? As the architect begins to deploy data with creative thinking, solutions begin to appear. The strands that tether the building to its urban context are pulled and their intentions become entwined. The lines become blurred and the distinction from the building and its context becomes an open conversation subject to the needs of current society. What if the home moved away when not used? What if we look at the home with a whole new perspective?

Figure 4.1 Jagnefalt Milton for Åndalsnes in Norway
If the home is not permanent it can give way to the public when needed. The controversy of space ownership between the public and private disappears. The home would exist when needed but remove itself for others when not in use. This cannot merely be done by removing its furniture and giving the space away for other function and it cannot be done by renting its space to others. The ownership of the space must not compromise, for each space must have its own identity. As architects, we must treat space with respect. The solution is not to re-identify or re-purpose the space, but to replace it all together. The entirety of the home must move, walls and all. Like a car, it must be driven on the road and put away in a garage when not in use. It must be able to interact in the context it chooses but be removed when not in use as to not hinder its surroundings and the needs of that space.

This leads to the question of how? Also, to what extent? If critique is on the skyscraper, the question must be asked what can truly be moved and what must be married to the site? For instance, it would not be logical or viable to move a foundation. Nor would it be viable to move an entire building at once. Even if this was possible, the electric and water hookup are embedded into the site as well. Meaning, it is inevitable that there must be a compromise and some things must me married to the site. This decision must be made in a way that allows for a viable strategy but still embodies the core concept. The scale of what is moving is the next question. Whether this mean several apartment units must move at once or even simply questioning the size of the apartment, an investigation of scale in pertinent.
One of the largest decision that must be made is the quality of space and life that will be provided. It is simple to deploy a tent but it shouldn’t be considered a home. The Urban Tent must give the user a quality space. If the apartment feels like a shoe box than the design has failed. The quality of light and space will be a major factor in the design and overall form of the design.

Finally, a decision must be made on how the public will be able to interact with the space given back to the surrounding context. The space must not over impede onto the private spaces and should allow for social activities that are not overbearing to the private spaces. The space must ensure safety and must be designed with the same conditions and procedures as a public park.
Although the concept of the urban tent may seem radical or unviable, there are already current precedents where this concept has been implemented. Kasita is a fairly new group of architects that seeks to do what part of this thesis is addressing and will serve an invaluable resource. Kasita gives you a truck-bed size house that can move from city to city at the touch of your smart phone. It is loaded onto a truck bed and moved when wanted then it is plugged into a larger superstructure. [1] Kasita is based out of Austin, Texas and is currently opening its first set of units in Austin in 2015. The demand for Kasita has been steadily rising and in 2017 they plan to expand to eleven different cities. The 225 square foot smart home is based on a modular system which always for customization while maintaining order and function.

Kasita and the urban tent both look to solve a similar problem: mobility. Not only does Kasita provide a working architectural and business for this market, but it show this mobile lifestyle can be achieved through elegant and sophisticated design. While by some this home may not be considered to be comfortable living, Kasita is an excellent precedent for creative housing strategies. Kasita also is a valuable resource to look at for innovative ways to handle electric, plumbing, and HVAC. Their design uses a tray system to that allows for easily consolidation of these hookups and makes for an easy connection when placing the units into the superstructure.

Another precedent that is helpful to reference is the Chicago’s Architecture Foundation. The Chicago’s Architecture Foundation is open to the public and provides a display of live city data. One model shows a visualization the citied city data and inner working to the public. This 30 foot scale model of Chicago uses lights from above to overlay and callout out different areas on the model depending on what the user wants to see. Examples include, climate data, traffic, crime, construction work, twitter usage, Internet usage, and population data, amongst many others. This data can be changed day to day starting Jan 1st 2008 through today. Architects can access this data and design around it. This data is used by other cities around the world to compare and contrast their city to come up with solutions, almost like lab work experiments. This is currently being used to understand the ways cities work so that cites may be designed for our current and future needs rather than what has worked in the past. This tool will allow for architects to design for solutions of the future even without the means currently existing.

Figure 5.3 Kent Larson’s MORPH CITY
Kent Larson’s MORPH CITY is a relevant precedent to my work. Kent Larson is a Professor at Massachusetts Institute of Technology. His use of technology led him to create not only apartments that adapt to the needs of the space at that time to help solve urbanism, but also led him to create vehicles and city analysis programs to help architects around the world. His project MORPH CITY focuses on adding more density to the apartment without adding any extra bulk to the building. This is also being looked at on a city scale, using data projections on the city to understand human activity within the city. The program he created called ‘city scope’ is in a trial phrase in Boston, Europe, and Saudi Arabia. His hope is that the city can better design itself by using this data and other cities can learn from them as well. Larson believes responding to this kind of data is what enables innovation.

By looking at new factors to solve problems creatively, Larson believes architecture will evolve. City planning will immensely evolve and embrace the digital era; building must embrace this same idea. Using technology to better accomplish and engage the public is becoming a necessary. Benefits at the urban scale include: improved circulation for both pedestrians and cars; improved emergency response; improved crime response; better social and cultural analysis; improved economic efficiency; and more importantly, provide spaces for the public to use when and where units are not being utilized.

These precedents show the value of open source design in different ways. Chicago’s example exists to empower the people by teaching them what ways we use the city and how the city reacts. Kasita can be taken at more of an architectural level for its execution and creative
alternative to addressing a problem of the home. Kent Larson’s work illustrates how employing technology and creative thinking can help us rethink the way we live and such the way we design.
Goals and Objectives

It is important to clearly identify the goals and objective the Urban Tent will pursue, as the challenges and ambitions of such an idea are nearly endless. With many of these solutions being on the verge of new technology or even speculative technology, it is important to develop a way of design that enforces a strategy and process of executing this concept. This also helps to focus and frame the overall design intentions without being overwhelmed.

The first goal is to create a clear process and intentions of how units will be moved on the site. This will be looked at in a way that optimized for the future. This will need to be researched and developed to a point where the procedures are clearly understood. The materials and details are subject to future technology and will not be the main focus of the design, but rather what they intend to accomplish.

Due to the urban tent wanting by nature to be mobile, there will be no site in particular that is focused upon. Rather, the focus will remain on the unit and how it interacts with the superstructure. The second goal is to realistically address the needs of site conditions. A focus will remain upon the public space it provides but will not necessarily tie into a specific context, or geographic location or typology. Rather, a process will be created how to address the site conditions.
This calls into question the exterior design as units could create a total over all aesthetic from the outside or could be a conglomeration of different designs constantly changing. As these units are constantly moving, the overall building will look different throughout time. The roofs of these units will allow for private patio spaces for the users. The third goal will be to create an aesthetic that works well for the units themselves but also speaks to the structure as a whole.

The unit itself will be the main design focus in need since the limited space must adapt to the needs of the home. Walls and floors must move accordingly as well as its furniture. This is necessary not only to utilize space efficiently but also to make the moving process more viable. Furniture must be able to survive the moving process without being moved, packed, or damaged. The fourth goal will be to create an apartment with furniture and fixtures that can react to this environment.

The unit must not only be able to mobile when shipped to its destination, but should also be able to adjust itself on the superstructure. The home should be constructed as a single separate unit that can be applied, removed, and relocated from the superstructure. In this way, the unit can give up its spaces to another unit when not in use. This would allow for not only for the building to be fully utilized but also for the home to give more space back to the public. Superstructures could be much smaller or efficient at the same size. With the unit functioning as a complete home, the super structure must only provide the support structure, electrical and plumbing access, emergency egress stairs, and outside hallways. This also brings in the option to give
more space to the public realm, or to space to build more units later. If the super structure retracts in a similar way giving way to the public space could be potentially fully realized.
Design Strategies – Movement

The first issue is how the units are intended to move. Not only must the units move to the site but they must also move on the site to its optimal space. Meaning it must have the ability to be translated in multiple directions to reach its desired location on the site. It was this issue that would effectively determine the design strategy.

Looking at train track systems, I began to evaluate how the two directional single axis could be broken into a system for multi directional translation. When two tracks are overlaid adjacent in axis, they become unusable due the connection point. When you remove the connection point, the movement is allowed but the system has been broken into pieces. If the system is then considered in three dimensions, a plane can be place below solving the issue.

Figure 6.1 Track System Diagram
To make this scenario work in more than one instance, the gap to rail ration must be equal. This allows for the track to be repeated and used as a full system rather than working only in a specific moment. This also allows for something very unique. The rail becomes a positive shape that interlocks with the moving object, the negative shape. The track can now interlock with another instance of itself.

Figure 6.2 Interlocking Track Typology
With this discovery I began to explore different things. First I began my implementing the tracks on both sides of the plane. This allows for the track to be used by two separate units at the same time. A large typology study was done to look at different ways this track system would work. By changing the thickness of gaps and altering the distance and angles that these incisions were made into the plane, the form began to show different advantages and disadvantages.

Figure 6.3 Interlocking track System
Unsymmetrical cuts or cuts without equal proportions to the gap left in the material won’t allow for interlocking pieces. More interesting, the more cuts that are made, the more codependent the systems become proportionally. While removing mass decreases the overall structure, when interlocking the positive and negative shapes the structure is returned. The structural advantages started to become aware. By changing the angle to forty-five from ninety degrees, the forces became diverted in moment rather than shear. This caused less stress on the small members themselves and put pressure of the overall system.

Figure 6.4 Chosen Track System Model
The next large discovery was in the depth of the cuts. When cutting too deep, the system the system would either be cut in half or would became too weak and eventually sever, due to the thin structure and large weight parallel the cut. Interestingly enough, when cutting to a specific depth you began you be cable to pass the separation of the plane yet still maintain structure. Shown in Figure 6.3 the interior structural members become a triangle truss system diverting each load to the four connecting members on the opposite side. The structure is essentially an arch. This structure works well in both shear and moment forces but works poorly in torsion. The track system essentially has influenced a structural system that works in very well in one instance: when it is interlocked.

Figure 6.5 Interlocking System
The final large discovery was the potential of altering light. When exploring formal iterations for structural potential, the aesthetic potential arrived. The strategies to create this track system had resulted in beautiful geometric patterns. But even more fascinating was the light and shadows that they would create. By filtering the light through these holes, the shadows would result in unique shapes that would change as the light moved. The final study removed the limitation of how these were made and challenged the form. Until not the profile of the cut has always been a rectangle so that these could be created on a table saw. With this limitation removed, the form became solely focused on creating unique light and shadow qualities.
Figure 6.6 Formal Pattern Study
With a system that allows for movement, structure, and aesthetic value the next step was to apply the system intelligently. The system must allow for the unit movement but not compromise structural integrity in the event of torsional forces. In this way the decision was made to align the system adjacent and not parallel to the ground, like a wall instead of a floor slab. This allows for the system to better distribute the weight of itself, as well as better transfer the loads of units placed upon it. This also will allow for the walls to be removed when no units are in place. With this system, units can be moved vertical up to the correct height, then move in depth to the desired location.

Figure 6.7 Track Wall Concept
Figure 6.8 Track Wall Concept Front
Figure 6.9 City Examples
Design Strategies – Site

One may find one of the most interesting aspects of proposing creating housing in this way is that the site issues must be addressed before a site is even chosen. Rather, the design must be able to work just as well on a city block in New York City as it does in Chicago. In essence, this project does not have a site. It has unlimited sites. While every instance of deployment will be different depending on location, a set of rules must be determined how this approached. Meaning a long narrow site in Chicago will have a different layout off units than a small lot in San Francisco. The process of how these units arrive to the site and arrange themselves on the site would be a constant, but the way this is determined must be variable to better take advantage of the surroundings.

It is important to consider how these housing units would amalgamate amongst each other. The arrangement of units not only will affect the light and general space conditions but will also directly affect the how the space that the units occupy feel when absent. Essentially the space unoccupied by a house unit will be used as a public park space. This means the shape over all floor plate of the site has a dramatic impact on how the space will feel both to the public and to its residents. With the quality of space being the highest importance, the question of height makes an appearance. For the height over the overall mass effects the quality of light greatly. This also allows for the park space to the public. By keeping the height low, the park area receives less shadows and wind from the units.
By setting a soft limit to height, the strategy of how to lay out the site becomes more apparent. First the extent of the site must be defined by placing units. By working from two opposite ends of the site toward the middle you can define how many total units the site is capable of and also allow for the middle of the site to be used as the park space when capacity is not maxed. By defining the edges, you are also able to strategically place the area where units will be transported and unloaded onto the site. Finally, the pieces that must remain married to the site must be placed. Excavation occurs and the foundation is laid with deep casts where the track system walls will be placed. The walls will be able to retract in and out of these protective casing’s much like a drawer. These walls will sandwich a stairwell on each side, thus creating a core. This core will provide most of the external structure as well as the circulation to the individual units. Heavy duty hydraulics will help raise and lower the cores when needed. This is
done for several reasons. First it allows for the core to only be exposed when interlocked with the reciprocating track pattern on the unit. When the core is interlocked it has its full structural capabilities. When not interlocked they core is susceptible to torsion. By only allowing the core to be exposed when interlocked, the instance is only used in its most optimal scenario. The next advantage is you are now able to change the amount of units held as demand presents itself. The quality of light and space is now increased and the park now gains increased hours of sunlight. Most importantly, you are now able to retract the unneeded core and give up space to the public, completing the full intention of the Urban Tent. With the largest obstacles out of the way, the park space can now be considered.

Figure 6.11 Gala Structural Hydraulics

The park space allows for the public to interact with each other and socialize. It is a place where you can take your lunch break or have a conversation with a friend in. The space is designed in a way to be open and feel less designed in nature. Much like a plaza or a wide street, the options of how the space is used will be determined by the context and the needs of the city around it. What is most important about this flexible space is that is not only the safety and security but that the space provides a quality atmosphere that anyone can enjoy.
The final site issue to address is the connection of water and power hook up. While this issue is something that still needs to be solved as a detail, it is more necessary to answer the question of how to approach the issue rather than focus to what extant this can be applied. Basing the approach on the success of Kasita’s tray system, the Urban Tent will similarly use a tray system. Using a raised floor, the try system is able to hide itself on the floor slab. The electric and water have been consolidated in close proximity for easier dispersions. The connections are run up through the star cores and allocated at specific points where units can hook up. Much like a MacBook charger, and assisted entry allows for the unit to properly place itself and then have its hookups inserted. This small insert can then be retracted and removed when ready to move again.
Legally the urban tent looks to identify on income based value. Much like a trailer park or a mall, you are paying for a unit, and a “lot fee” with costs depending on location. By separating these costs, you are able to start clearly identifying parties of interest. By owning your property but you leasing your property space you allow for the site to identify its value based on a combinations of the number of units occupying it and benefits in result of public space.

Much like a mall, the project will invest in space up front to provide space with more value to place the units upon while still maintaining the public space. Seasonal inventory would allow for the property to be appraised correctly regardless of the number of units currently occupying the superstructure. Providing a public park space within the city provides tax cuts and tax write offs. By creating a Green Belt in the city the project can be looked at in a sense of conservancy districts, resulting in said tax write offs. This space can now be seen as a sort of amenity rather as a foregone charity to the proprietor aside from being advantaged real estate.
Context influences creativity, for the tools we choose use help define our path for ingenuity. The track system needed for the Urban Tent influenced much of its form. Just as the tools needed to create the system influenced its design. Most importantly, when the process of design was defined, the development of new forms allowed for the end goal to change completely. Form derived from function, function created by form.
Figure 6.14 Facade Light Pattern Study
To truly take advantage of this pattern the units must be oriented in a way to take advantage of sunlight and then the façade must be applied to the correct faces. As seen in Figure 6.14, the application of pattern allows for light to be strongly manipulated throughout the day. This instance allows for light to enter the space without an excessive amount of direct light heating the space.

The interior of the units went through many iterations. The design began to intelligently develop once the main focus became integrating in the furniture into the home itself. As the unit will be constantly being moved at the will of its owner, the home must be able to keep its contents from being damaged. The goal was to create a space that was aesthetically pleasing, efficient in its use of space, and to integrate as many things into the home as possible. The fewer things that are not anchored down, the more successful the project is.
The main area of focus for this was the kitchen and dining area. These areas had the most “loose items” from chairs and tables to dishes and food items. With a large goal being to avoid packing or having to secure anything before moving, the design began to influence how the home would operate. The table and chairs were first approached. It was decided that these would be treated as simple hinged plains that would seat into a reciprocating gap in the floor. By doing so, the table can be lowered protected when the unit is being relocated. It is in this way the rest of the interiors began to shape themselves in a way to function both as intended and as compacting themselves for the moving process.
In conclusion, The Urban Tent embodies architecture with the power of mobility to help aid the needs of society. It gives back public space to the urban context, to enhance not only the quality of space for the individual but for the public as a whole. Moving forward, this thesis acts as an example of how the built environment will actively respond to the city by constructing and deconstructing itself. In the future you will be walking down the street and you might see a building doing the same. Maybe you will wake up one morning and the entire city could be gone or an entirely new city will have arrived. Buildings will be the vessels that serve the ambition of humanity and cities will be an ever changing result reacting to society’s wants and needs. The future city will treat its space like an open conversation, an ocean that is in a constant shift relative to outside forces. The future city will not need the anchors of structure on a site, it will not need to hook into the architectural systems of the city: for the building will be all of this. As it stands, the urban tent acts like a ship coming to dock at a port, connecting to a greater infrastructure. In the future, it will be as a tent – it will deploy itself where it pleases not relying on the site to sustain its life. Only this way, will the future city be able to construct and deconstruct itself according to the public’s desire.
Bibliography

Goldsmith, Stephen, and Susan P. Crawford. The Responsive City: Engaging Communities through Data-smart Governance.

Townsend, Anthony M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia.

Pawley, Martin. Terminal Architecture. London: Reaktion Book
