I, Chengguo M Zhao, hereby submit this original work as part of the requirements for the degree of Master of Architecture in Architecture (Master of).

It is entitled:
New Palace-Design a Multi-Functional Sports Complex for Yanbian Korean Prefecture in Northeastern China

Student’s name: Chengguo M Zhao

This work and its defense approved by:

Committee chair: George Bible, MCivEng

Committee chair: Michael McInturf, MARCH
New Palace
Design a Multi-Functional Sports Complex for Yanbian Korean Prefecture in Northeastern China

A Dissertation Submitted to:
Graduate School of the University of Cincinnati

In partial fulfillment of the requirements for the degree of:
Master of Architecture
In The School of Architecture and Interior Design of The College of Design, Architecture, Art and Planning

By
Chengguo Michael Zhao
M. Arch., University of Cincinnati. 2011

Committee Chairs:
Tom Bible
Michael McInturf
With nearly 5,000 years of civilization history, Chinese architecture has a unique history and identity that has great influence to other far-east Asian countries. After WWII, during its redevelopment in buildings and infrastructures Chinese architecture, flushed by western architectural typology and methodology, began losing its unique technique and identity.

The purpose of this thesis, by analyzing traditional Chinese dwelling construction and I.M.Pei’s attempts to inventing modern language of Chinese architecture, is to re-interpret and develop a new architectural language with current technology for the Chinese-Korean community in China.

Within the stadium design for Yanbian Korean Autonomous
Prefecture of China, highly influenced by diverse history and culture, I will program and design a contemporary mixed use facility that will attempt to unite a sports facility, a cultural hub and a education center, while paying respect to historic and contemporary design theories.
TABLE OF CONTENTS

Abstract

Introduction

<table>
<thead>
<tr>
<th>Chapter 1:</th>
<th>Traditional Chinese Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01 Axis</td>
<td></td>
</tr>
<tr>
<td>1.02 Modular</td>
<td></td>
</tr>
<tr>
<td>1.03 Courtyard</td>
<td></td>
</tr>
<tr>
<td>1.04 Passageway</td>
<td></td>
</tr>
<tr>
<td>1.05 Entrance</td>
<td></td>
</tr>
<tr>
<td>1.06 Frame</td>
<td></td>
</tr>
<tr>
<td>1.07 Platform</td>
<td></td>
</tr>
<tr>
<td>1.08 Wall</td>
<td></td>
</tr>
<tr>
<td>1.09 Roof</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2:</th>
<th>Northeastern Chinese Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01 Axis</td>
<td></td>
</tr>
<tr>
<td>2.02 Modular</td>
<td></td>
</tr>
<tr>
<td>2.03 Courtyard</td>
<td></td>
</tr>
<tr>
<td>2.04 Passageway</td>
<td></td>
</tr>
<tr>
<td>2.05 Entrance</td>
<td></td>
</tr>
<tr>
<td>2.06 Frame</td>
<td></td>
</tr>
<tr>
<td>2.07 Platform</td>
<td></td>
</tr>
<tr>
<td>2.08 Wall</td>
<td></td>
</tr>
<tr>
<td>2.09 Roof</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3: Korean Architecture
3.01 Axis
3.02 Modular
3.03 Courtyard
3.04 Passageway
3.05 Entrance
3.06 Frame
3.07 Platform
3.08 Wall
3.09 Roof

Chapter 4: Yanbian Korean Prefecture, China
5.01 Korean Minority in China
5.02 Site Context
5.03 Site Analysis
With 5,000 years of unbroken tradition, Chinese has developed a richly diverse vernacular architecture that greatly influenced Eastern Asian architecture, and many western architects’ design. China is a nation with fifty-six distinct nationalities living in disparate natural landscapes with widely varying climatic conditions. The largest nationality is Han, who constitutes about 91.9% of the total population.\(^1\) Ethnic minorities constitute 8.1% of the population.\(^2\) Some of large ethnic groups include Zhuang, Man, Ughur, Hui, Miao, Yi, Tujia, Mongols, Tibetan, Buyi, and Korean. These ethnic minorities have carefully preserved their culture, identity, and architecture through the history. China’s traditional architectural form clearly reveals the broad range of solutions that humans
are capable of providing basic shelter and creating homes for their families while portraying common elements and preserving unique identity from each community. The hierarchically ordered quadrangular residence in Beijing, the imposing silhouettes of a circular Hakka fortress in Fujian, the subdued grandeur of a cube-like Huizhou merchant’s manse in Anhui, the graceful “swallow’s tail” ridgeline of a Taiwan farmer’s house, the compact and utility shape of a Mongol yurt, and the stark functionality of an underground dwelling in the loessial uplands of northern China are all examples of traditional Chinese, or Asian, architecture. These unique buildings express specific environmental and social conditions characteristic of China at different times in the past and in the different regions, and enriched Chinese architectural pattern. But very few of them still can be seen today.

1) CIA world factbook, 29 March 2006
2) CIA world factbook, 29 March 2006
CHAPTER 1: TRADITIONAL CHINESE ARCHITECTURE

BIBLIOGRAPHY:

- 周立军，陈博超，张成龙，孙清军，金虹，中国民居建筑丛书，东北民居，中国建筑工业出版社，2009
[**Jian, 间**： is the span between two lateral columns]

[**Jia, 架**： depth of the building, refers to one of the stepped roof pulins- the horizontal longitudinal timbers needed to support the common rafters of a rising roof.]
Traditional Chinese buildings have some fundamental measurement units for its layout.

Jian, is the distance between two lateral columns. Sometimes it also refers as the space between four columns, comprising both the two-dimensional floor space and the volumetric measure of the void defined by walls and floor. Today, we commonly view a Jian as a room, although most of time a room is made up of several structural Jian.

Jia, is a term for depth of the structure. Each Jia refers to one of the horizontal longitudinal timbers that support the roof. The slope of the roof is depend upon the relative vertical placement of purlins.

Jian and Jia linked together form the geometric grid of a plan or
Northern China Dwelling 北方民居

Southern China Dwelling 南方民居
layout for most of traditional Chinese dwellings. These modular systems give a high flexibility to majority Chinese family dwelling, in order to modify and grow over generations.

Most of Chinese dwellings are horizontal I-shaped structures. The width of each Jian in northern China usually between 3.3 and 3.6 meters, and range up to 6.6 meters in southern China. Simply say, southern Chinese dwelling usually add at least a Jian in depth, which double the depth and tripled the number of Jia (roof beams).

Normally, Chinese dwellings have an odd number of Jian and Jia, such as three, five, seven, and nine. According to Huitu Lu Ban Jing, Chinese believe odd numbers provide balance and symmetry to a building while even numbers are inauspicious.

Sumptuary regulations are also important factors of standardization, modularization, and stylization of Chinese houses. For example,
Traditional Chinese Building

Main Room
主间

Secondary Jian
次间

Intermediate Jian
梢间

End Bay
尽间

Three Jian

Common People
庶民

Three Jian

6 - 9 Rank
六品－九品

Five Jian

1 - 2 Rank
一品－二品

Eleven Jian

Hall of Supreme Harmony
太和殿

End Bay

Intermediate Jian
梢间

Secondary Jian
次间

Main Room
主间

Secondary Jian
次间

Intermediate Jian
梢间

End Bay
尽间

Private Private Private Semi - Public Private Private Private
common people were not allowed to build a house larger than three Jian in width and five Jia in depth. During Ming dynasty, officials from sixth through ninth ranks were limited to three Jian in width and seven Jia in depth, while the first and second ranks were allowed to build longer and deeper dwellings with five Jian in width and up to nine Jia in depth. In Qing dynasty, the sumptuary rules were changed. Dimensions of timber and proportional height of the building determined the status of structure. For example, the Hall of Supreme Harmony in the Forbidden City is eleven Jian wide and was the tallest and the largest structure until the late imperial period.

The center Jian of a building usually is considered as the most important room in the building. It is typically wider than flanking Jian. The center Jian has symbolic meaning in Chinese building – standing for unity and continuity. Traditionally, there is a long table facing the door along with
Hall of Supreme Harmony in Forbidden City, which shows eleven Jian,
an important image, such as gods and goddesses, hanging on the wall. It is a place where family gathers together or meets guests. Simply stated, it is the “living room” in western terms. Next to the center Jian is a pair of Ci-Jian (secondary bays), which usually serve as bedrooms. Adjacent to Ci-Jian are a pair of Shao-Jian (outer bays) for storage. The end bays are called Jin-Jian, which also serve as sleeping or storage.

As a structural unit, Jian also became a measurement unit for builders and design module for expanding buildings in two-dimensional and three-dimensionally. It created a kind of standardization in construction that can be used all types of Chinese structures.
[Jing, 井: a well or an open vertical passage sunk into the confining earth]
Cosmological thinking is a big part of Chinese philosophy. The use of Yin-Yang and expression of a balanced relationship are frequently used in Chinese culture. As in a Chinese painting, the areas without black brushstroke are as much a part of the composition as the pigment lines and dots. The same is true in Chinese architecture; exterior open space is as important as structures enclosing it. It is a location for people to gather, work, storage, and rest. It also brings the outside nature world into building complex. Paralleled and right-angled inward facing structures frame the exterior space in building complex, which very similar to a Chinese character 井 – a well or open vertical passage sunk into the confining earth. We can find expression of balanced relationship everywhere in Chinese building – Inte-
Northern China - Courtyard

Southern China - Lightwell
rior and exterior, above and below, host and guest, light and shade, active and passive, solid and void.

The size and scale of open space in a building complex varies across China. The proportion of open space to structural space, decrease significantly from northern China to southern China. Open space in Chinese building complex is a result of adding a structure to the exposed fourth side of an inverted U-shaped structure. Because southern structures are much deeper in depth than northern structure, this creates smaller open space in the south. Even in Chinese language, the words describing those open spaces are different. In the north, the larger open space is called Yaun-zi – courtyard, while in the south people call the smaller open space a Tian-jing – skywell.
One-Courtyard

Two-Courtyards

Three-Courtyards

Courtyard - when the courtyard needs to expansion, it uses a one-courtyard unit as a modular and add it up in adjacent lot to create multiple courtyard house. Large scale palaces are good example of multiple courtyard unit.
Multipul-Courtyards
Northern China - Narrower Passageway

Southern China - Wider Passageway

Passageway - As the diagram shown, southern passageway is much deeper than northern passageway. It provides a transitional space between courtyard and private bedrooms. It also reduces direct sun light in order to protect the wooden partition between passageway and rooms.
Passageway varies in form and function from one area to another in China. It may serve as covered exterior corridor, but in many regions it is considered as a transitional space between the inside and outside of a structure. In northern China, the passageway is usually so narrow that the only possible movement is single file. Moving down to southern China, the passageway became wider as the courtyard get smaller, which increased the function of passageway from mere circulation path to room-like community space. As size increases, the passageway can be viewed as an extension of both interior and exterior space.
1. 台梁 Tai-Liang - only a pair of corner pillars support a beam - common in northern China
2. 櫓斗 Chuan-Dou - the pillars directly support the roof pulins - common in southern China
3. 干栏 Gan-Lan - structure is lifted by stilts or piles - common in southern minority group in China
The building form that links the foundation and the roof usually depends on either walls that bear the load or another mechanism of uplift for the upper exterior surface and its interior supporting structure. Traditionally, Chinese buildings were built with wooden skeletons – wooden pillars and beams were primary load support, instead of walls.

There are three major wooden framing systems found in traditional Chinese architecture: Tailiang Framing System, Chuandou Framing System, and Ganlan Framing System.

Tailiang Framing System is the simplest system that uses two pillars to support a long beam. This sufficient system has been a popular construction type in many regions in China, especially northeastern China.
Chuandou Framing System is common in southern China. It permits a much higher degree of roof curvature. There are three major differences with Tailiang Framing System: The pillars directly support the roof purlins; the number of pillars is greater; and the horizontal tie beam members are mortised directly into pillars to form an interlocking matrix skewing the relatively pliable frame.

Ganlan Framing System is much more popular in southern minority groups. It is lifted up from ground in order to reduce moisture. The most developed Ganlan structures are made of bamboo.
[Functional Platform - Reducing dampness and providing a compacted base necessary to support the often large and heavy structures.]
Traditional Chinese buildings generally rest directly on compacted earth or are slightly raised on a solid foundation made of earth, stone, or brick.

Such bases serve as transitional devices to carry the substantial weight of building safely to the ground without allowing it to become deformed. In some region with humid condition, raised buildings also reduce contact with ground moisture and keep the building dry, which provide comfort living conditions for residents.
[Social Hierarchy Platform - The height of a building’s podium was linked to the status of the occupant]
During the nine hundred year Zhou dynasty, the height of a building’s base was linked to the status and position of the residents.

The base of the building usually extends beyond the walls and the center hall in the rear has a higher base than other buildings.
[Non-Load Bearing Wall - simply fill the gaps between pillars and create different spaces for activities]

[Load Bearing Wall - directly bear the weight of horizontal roofing timbers and other components]
Once frame works are completed, it is necessary to create walls that separate spaces and protect the interior spaces from outside weather. Since the wooden frame is supporting the roof directly, walls are unnecessary to receive direct loads and simply fill the gap between wooden pillars. Because these non-load bearing walls are basically curtain walls that only divide interior spaces, they provide enough freedom to space windows and doors.
Solid Brick Wall Patterns

Hollow-core Brick Wall Patterns
Flat Tamped Wall

Corrugated Tamped Wall
硬山顶

[Ying-Shan Ding - roof profile flush with the end of the wall with only some simple decorative brickwork - commonly seen in northern China]

悬山顶

[Xuan-Shan Ding - have pulins that extend beyond the endwall - commonly seen in southern China]
The roof has always been a very expressive component of Chinese structure. It functions as a canopy that shelters the structure and interior spaces and carries powerful symbolism.

Climate has a preponderant influence on the various forms that Chinese roofs have taken. In areas of substantial rainfall, the major concern is quickly moving falling water to the eaves in order to minimize the infiltration of moisture into the building.

There are four major Chinese roof types that can be identified through history: Yingshanding, Xuanshanding, Sizhuding, and Xieshanding.

The Yingshanding roof profile comprises a gable that is flush with the end of the roof. It is common roof type throughout northern China. This type of roof is suited to areas of limited rainfall, where there is no critical
Ma-Tou Qiang - gable wall rise in step above the roofline - commonly seen in southeastern China

Si-Zhu Ding - structurally rather complex, four sides sloped roof - commonly seen in palaces, temples, and large residences, but on small dwellings as well, such as Korean community
need for shielding the gable end of the building from weathering.

The Xuanshanding roof, “overhanging gables”, have purlins that extend beyond the endwalls, which provide some protection for the gable walls. This type of roof is commonly seen in southern China.

The Matouqiang roof is similar to Yingshanding that roof flush with end walls. But the gable rises significantly above the roof slope. This type of roof is easily found from the Yangzi River southward.

Xieshanding, or Sizhuding, is structurally much more complex than the others. It is commonly seen on Ming, or Tang period palace, temple and large residences. This type of roof had been used widely since Song dynasty, but during Ming and Qing period became restricted in its use only for palaces and temples, especially in areas near capital Beijing. Some remote areas that far away from Beijing still have dwellings constructed with hipped roof, especially in Korean community in northeastern China. And these are very similar to those seen throughout the Korean peninsula.
CHAPTER 2: NOTHEASTERN CHINESE ARCHITECTURE

BIBLIOGRAPHY:

- 周立军，陈博超，张成龙，孙清军，金虹，中国民居建筑丛书，东北民居，中国建筑工业出版社，2009
If we look back at the history of Northeastern people, we can find that most of people of this area were farmers who migrated from other places, when they first came, they didn’t have sufficient money to build grand villa, like those in the capital, Beijing. Buildings in the Northeast are usually single stories or clustered together in compact villages. In order to improve accessibility, the entry was usually placed at the center of the building complex, which highly emphasized the symmetry.
INNER COURTYARD
OUTER COURTYARD
ENTRANCE
STORAGE
EAST WING
WEST WING
LIVING ROOM
BEDROOM
BEDROOM
BACK YARD - LEISURE OR EXTRA STORAGE
CONVENIENT FOR DELIVERY
DEFENSE TOWER
CENTER POSITIONED ENTRANCE - CONVENIENT FOR IN AND OUT

INNER COURTYARD
BEDROOM
BEDROOM
LIVING ROOM
WEST WING
EAST WING
CONVENIENT FOR DELIVERY
BACK YARD - LEISURE OR EXTRA STORAGE
DEFENSE TOWER
CENTER POSITIONED ENTRANCE - CONVENIENT FOR IN AND OUT
Several single story freestanding buildings form most of northeastern building complexes. Due to most of the residents’ occupancy as farmers, the northeastern building complex has much larger void space than traditional Beijing quadrangle houses. Beijing quadrangle houses usually have about 50% of void spaces while northeastern house have nearly 70% of void space for circulation and storage. Because early immigrants had to settle in rural area, many buildings had defense tower at four corners.
Courtyard Space - Beijing quadrangle houses usually have about 50% of void spaces while northeastern house have nearly 70% of void space for circulation and storage.
Since most buildings joined together, the passageway is also linked.

Most of northern houses’ passageway only runs along the building length.
Unlike traditional courtyard house, several individual freestanding buildings form northeastern houses. Thus, the passageway only remains the length of each building without connecting each other.

The width of the passageway is much narrower than southern passageway. The function of this gray area became not as prominent as southern passageway. The majority of resident’s outdoor activities move toward to courtyard space.
[TYPICAL QUADANGLE HOUSE - Off axis entrance creates an ambiguity]

[NORTHEASTERN HOUSE - Centered entrance provide more direct accessibility.]
Traditionally, entrance plays a very important role in Chinese architecture. It is an important component of the house that moves people from the exterior world into the interior. Depending on the rank and wealth of the household, the entryway might be of muted colors or might have columns and door panels painted bright red.

Earlier people that moved to northeast of China were mostly poor farmers, who were seeking better farm land. For them, the accessibility of a house was much important that expressing its rank or wealth, thus central entrance was a more popular choice for construction.
[Platform - In the Northeast, the platform was much more determined by function and less by status. Thus the heights did not vary as much according to status.]
The platform of buildings in northeastern China gives a solid support for buildings that sit on uneven site and provides a clean base for building construction.

During the nine hundred year Zhou dynasty, the height of a building’s base was linked to the status and position of the residents.
Load Bearing Wall

Non-Load Bearing Wall / Partitions
Because of the availability of mud brick techniques, people in northeast started using brick walls as load bearing wall, and have wooden beams sit on top of gable to support roof system. It also provided sufficient flexibility for interior spaces while still maintain modular grid.
[Frame - Load bearing walls on two ends directly supports the roof purlins and provide sufficient flexibility for interior space arrangement.]
Since using brick wall as main structural support of a building, the frame of a structure became much simpler and straightforward. Roof purlins sit directly on top of gable wall. There are no wooden purlins inside of structure, which makes the interior space very flexible while maintaining a rigid grid system.
[Ying Shan Ding 硬山顶 - roof profile flush with the end of the wall with only some simple decorative brickwork - the use of Ying-Shan Ding increased in Ming Dynasty because of the development of fired brick.]
Because the wooden roof purlins sit on end walls, it is much easier to set the roofline flush with load bearing wall.

The Yingshanding roof profile comprises a gable that is flush with the end of the roof. It is common roof type throughout northern China. This type of roof is suited to areas of limited rainfall, where there is no critical need for shielding the gable end of the building from weathering.
BIBLIOGRAPHY:

- 周立军，陈博超，张成龙，孙清军，金虹，中国民居建筑丛书，东北民居，中国建筑工业出版社，2009

CHAPTER 3: KOREAN VENACULAR ARCHITECTURE
The most original structure and entrance has strong axis, but because Korean dwellings grow organically, the strong axis quality was lost along the way. When we look at some houses and there must be a axis, although whole assembly looks more complex.
The Korean Architecture still respect the axis quality in building design.

The most original structure and entrance has strong axis, but because Korean dwellings grow organically, the strong axis quality was lost along the way. When we look at some houses and there must be a axis, although whole assembly looks more complex.
Unlike Chinese houses, the Korean houses don’t have a strict order of building around should placed in a courtyard. Usually the earliest structure remains on the axis, and other expansion buildings grow naturally from it. The most important buildings stay on axis and other buildings are built around them.
Unlike Chinese houses, the Korean houses doesn’t have a strict order of building around should placed in a courtyard. Usually the earliest structure remains on the axis, and other expansion buildings grow naturally from it. The most important buildings stay on axis and other buildings are built around them.
Eliminate “Fire-Tower”

“God Room” became import part of complex

West

China

Korea

China

Korea
Traditional Chinese architecture is inward focused and western architecture is very objective and outward focused.

Korean Architecture has both an inward and outward focus. The buildings are always surrounded by big open space, but at the same time buildings also form an inward courtyard for privated activities.

Korean buildings eliminated defense towers that some northern Chinese buildings had and placed a “God Room” at the northeast corner of the house.
The corridor in Korean architecture is a transitional space between interior and exterior and also an important space where people gather together to enjoy some social activities.

Most Korean buildings have a partially covered corridor or a center Jian that totally open to the public. Some buildings either have a full length corridor or no corridor at all.
Han (Chinese)

Korean
The Traditional Korean building entrance follows two criteria: one is that it always faces south, and the other that it is always on the center axis with the original structure of the building. Because Korean building complexes grow naturally, the current layout doesn’t necessarily have a strong axis and symmetry.
Load Bearing Pillars - Wood frame decreased the material use and give flexibility to arrange partitions in between.
Several single story freestanding buildings form most northeastern building complexes. Due to most of the residents’ occupation as farmers, the northeastern building complex has a much larger void space than traditional the Beijing quadrangle houses. Beijing quadrangle houses usually have about 50% of void spaces while northeastern house have nearly 70% of void space for circulation and storage.
[Platform - Korean dwellings are hybrid of both stone and stilts platform express the social hierarchy, while functionally reduce the moisture.]
Korean dwelling’s platform echo with other traditional Chinese architecture has a strong stone base on the bottom. In addition, Korean architecture usually elevates the floor plate on top of the stone platform about 20-30 centimeters in order to reduce moisture. Most of the times, the stone platform also act as column base, giving the structure a solid support.
Partitions - Non-load bearing walls fill in between columns, create spaces for different activities.
Like traditional Chinese architecture, the actual walls in Korean architecture are non-load bearing walls and only serve as a division and separation of spaces. Instead of using all lattice wooden screen partitions, Korean architecture makes a clear distinction between partitions and doors/windows. The material that Korean minority used for constructing walls is mud with a white paper finish or white stucco, which create high contrast with the wooden pillars.
[Si-Zhu Ding 四注顶 - structurally rather complex, four sides sloped roof - commonly seen in palaces, temples, and large residences, but on small dwellings as well, such as Korean community.]
One major distinction between Korean buildings and Chinese buildings is the roof profile.

Chinese architecture developed various roof profile through history. Korean building’s roof profile echo Chinese architecture during the Tang dynasty - massive hipped tiled roofs, which are only be seen in Chinese palace or temple construction.

Korean architecture uses a more complicated hipped roof is that instead of the simple intersections of four sloping surfaces, a vertical place is inserted on both ends.
CHAPTER 5: YANBIAN KOREAN PREFECTURE, CHINA
Korean Autonomous Prefecture in Jilin Province, in Northeastern China. Yanbian is bordered to the north by Heilongjiang, on the west by Baishan City and Jilin City, on the south by North Hamgyong Province of North Korea, and on the east by Primorsky Krai of Russia. Yanbian is designated as an autonomous prefecture due to the large number of ethnic Koreans living in the region. The prefectural capital is Yanji, and the total area is 42,700 square kilometers (16,500 sq mi).

In the Ming Dynasty, Yanbian was governed by the Jianzhou Guard-district, and in the late Qing Dynasty the area was divided into the Yanji and Hunchun sub-prefectures. In the 19th century, it was Chinese immigrants that migrated en masse from China proper to areas that were formerly off limits to Han Chinese migration. Qing China was not a Han Chinese state, but a Manchurian state. And, the Manchurian policy of trying to ensure that they were not assimilated by the Han Chinese stood as the main reason why immigration wasn’t allowed into traditionally Manchurian lands (1644 - 1800s). Those who took part
Korean Immigration Illustration
in the Chinese Civil War did so with the implicit understanding that after the Chinese communists won, the Chinese communists would assist Korean communists in their own civil war.

In the 19th century, Korean immigrants migrated en masse from the Korean peninsula to China. After the foundation of the Republic of China, a second wave arrived. The population increase was caused by the Japanese invasion of that region. The Japanese were trying to use Korean immigration to diffuse the staying power of Chinese in that region. After the end of World War II, many Koreans did not go back to Korea, even though their country had been liberated (as there were economic and political problems back in their country). Instead, they joined the Chinese Civil War and were mobilized by both Chinese communists and the Chinese Nationalists. When the civil war was over, the new Chinese government gave Koreans their own autonomous region in 1952. Yanbian was upgraded to an ethnic autonomous prefecture in 1955.

Korean migration into what is now China (Manchuria) began at the tail end of the 19th century and were for the most part escaping the economic hardships faced under Japanese economic policy.

In 1952, the Korean migrants composed some 60% of the local population, but
by 2000 their share shrank to 32%. The Chinese government subsidize Korean language schools and publications, but also take measures to prevent an emergence of the Korean irredentism in the area. From the late 1990s the Koreans began to be assimilated into Chinese culture with increasing speed, often switching to daily use of Chinese and choosing to attend the Chinese language schools.
Site view
Source: Google Map
APPROACH TO SITE

Photo by Chunhua Li
The site sits in a valley. The topography drops approximately 45 meters from the ridge to the valley.
A major street that connects northern residential area and downtown placed west edge of the site; the branch of this street pass by north side of the stadium.
The site is located northwest of the city. It is surrounded by University, High-end residential, Zoo, Cultural Center, and Memorial Museum.
SITE CHARACTER

According to the site force that I have studied, I divided the site to ten parts. Each part have special character that requires different design approach.
The Site is located at an angled site with three different axis. One is perfect north axis that aline with university campus, another one is the staium axis, and last one is alined with northern residential axis.
In order to understand the modular quality of the site better, I separated the site to three different parts that centered with axises.

1. FRONT PLAZA
2. STADIUM
3. REAR PLAZA
There are three main open spaces available on the site. Front plaza, currently occupied as parking space, main stadium field, and a practise field on the back.
There are several possible entrances to the site. Except north, south entrances there is also an east entrance facing toward memorial hall and other residential communities.

7. Steinhardt, Nancy Shatzman. Chinese Imperial City Planning. Honolulu:
8. 周立军，陈博超，张成龙，孙清军，金虹， 中国民居建筑丛书，东北民居，中国建筑工业出版社，2009