UNIVERSITY OF CINCINNATI

Date: 27-Oct-2009

I, Kathryn Hedrick, hereby submit this original work as part of the requirements for the degree of:

Master of Science

in Geology

It is entitled:

Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India

Student Signature: Kathryn Hedrick

This work and its defense approved by:

Committee Chair: Lewis Owen, PhD

Craig Dietsch, PhD

Marc Caffee, PhD
Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India

A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of

Master of Science

in the Department of Geology
of the College of Arts and Sciences

2009

by

Kathryn A. Hedrick
B.S., Beloit College, 2006

Committee Members: Lewis A. Owen, Ph.D. (chair)
Craig Dietsch, Ph.D.
Marc W. Caffee, Ph.D.
Abstract

To delineate the transition in pattern and timing of glaciation between two contrasting regions, Lahul to the south and Ladakh to the north, moraines in the Puga and Karzok valleys of Zanskar in the Transhimalaya of northern India were mapped and dated using cosmogenic 10Be. In Lahul, Late Quaternary glaciation was extensive glaciers advanced > 100 km from the modern ice margin, whereas glaciation in Ladakh has been comparatively restricted, glaciers advanced only ~30 km from the contemporary glaciers during the last 200 ka. In the Puga valley, glaciers advanced > 10 km at ~115 ka and < 10km at ~40 ka, ~3.3 ka, and ~0.5 ka. In the Karzok valley glaciers advanced < 2 km at ~3.6 ka. Boulder exposure ages from a large moraine complex in Karzok indicate a glacial advance at ~80 ka of < 5 km. The oldest moraine in Karzok is ~310 ka, indicating that glaciers advanced > 10 km during MIS-9 or older. The glacial chronology of the two valleys shows a lack of early Holocene glaciation and generally asynchronous glaciation between them. Moraines in the Puga and Karzok valleys broadly correlate with previous studies in the Zanskar Range but the paucity of data for many of the glacial stages across the Zanskar region makes the correlations tentative. The lack of early Holocene glaciation in the Puga and Karzok valleys is in stark contrast to many regions of the Himalaya, including Lahul, and the restricted glacial extent in Zanskar is more similar to the style of glaciation in Ladakh. The similarity between the glacial records in the Puga and Karzok study areas suggests that the transition to Lahul style glaciation is to the south of the Karzok valley; this geographical transition is abrupt.
Acknowledgments

The author would like to thank her committee members Lewis A. Owen, Craig Dietsch, and Marc W. Caffee for their interest, support, and invaluable feedback and contributions towards this project. Additionally, she would like to thank Discover Ladakh Adventure for logistical support in the field, as well as Karan Thakur for field support, Jason Dortch for his reviews and comments, and Tim Phillips for his suggestions and aid in drafting figures. Susan Ma, Tom Kubley, and Tom Clifton of PRIME Lab graciously provided technical support.

Thanks to the University of Cincinnati’s Department of Geology for funding and support of this work as an M.S. thesis and the Geological Society of America and Sigma Xi for funding grants. Chemical preparation and AMS measurement of Karzok samples in this study were supported by the Korea Research Foundation Grant funded by the Korean Government.
Table of Contents

Abstract ... iii

Acknowledgements .. v

List of Tables and Figures ... 2

List of Appendices ... 3

1. Introduction .. 4

2. Regional setting .. 7

 2.1 Previous glacial geologic studies ... 10

3. Methods ... 14

 3.1 Field methods ... 14

 3.2 ^{10}Be exposure age dating ... 15

4. Study areas .. 18

5. Landform descriptions ... 22

 5.1 The Puga Valley ... 22

 5.2 The Karzok Valley ... 23

6. Ages of landforms .. 26

 6.1 The Puga Valley ... 26

 6.2 The Karzok Valley ... 28

 6.3 Further considerations ... 29

7. Discussion .. 30

8. Conclusions ... 34

References ... 36
List of Tables and Figures

Figure 1: Location and study area ... 6
Figure 2: Regional annual precipitation ... 9
Table 1: Boulder information and \(^{10}\text{Be}\) surface exposure ages 16
Figure 3: Puga moraine and sample locations ... 19
Figure 4: Puga moraine photographs ... 21
Figure 5: Karzok moraine and sample locations ... 24
Figure 6: Karzok moraine photographs ... 25
Figure 7: \(^{10}\text{Be}\) boulder ages .. 27
Figure 8: Lahul, Zanskar, and Ladakh glaciation comparison 32
List of Appendices

Appendix-A. Boulder descriptions and photos ... 43
1. Introduction

The Himalayan-Tibetan orogen is Earth’s most glaciated realm, outside of its polar regions. The orogen has been extensively glaciated in the past, with Quaternary glaciers advancing > 100 km beyond their present positions (Haeberli, 1989; Owen, 2009). This has resulted in impressive glacial landforms throughout the region, recording details of past glaciation and environmental change. Until recently, however, relatively few studies had established quantitative glacial chronologies in the Himalayan-Tibetan orogen. With the advent of surface exposure and luminescence dating, numerous studies illustrate the complexity of the glacial records. These studies are beginning to constrain the timing and extent of glaciation throughout the region (Damm, 2006; Owen et al., 1997, 2001, 2003, 2008; Phillips et al., 2000; Richard et al., 2004; Seong et al., 2007, 2009; Sharma and Owen, 1996; Sloan et al., 1998; Taylor and Mitchell, 2000).

Many of these glacial geologic studies are motivated by the desire to understand the interplay of two major climate systems, the south Asian monsoon and the mid-latitude westerlies (Benn and Owen, 1998). Variations in the strength of these two systems over time (Gasse et al., 1996; Demske et al., 2009; Bookhagen et al., 2005) as well as climatic gradients due to climate change and orographic effects has resulted in strong precipitation gradients across the orogen. These precipitation gradients change over time (Ives and Messerli, 1989; Owen and England, 1998), influencing glaciation throughout the region. Owen et al. (2008) highlighted the contrast in the extent of glaciation across a stretch of northern Pakistan and northern India during the Lateglacial (~16-14 ka). Owen et al. (2008) also demonstrated that in the Hunza Valley in northern Pakistan, glaciers had only advanced a few kilometers from their present positions, whereas in the Central Karakoram ~100 km the east, glaciers formed an extensive valley glacier
system that extended > 100 km from their present positions.

To further examine the record of these strong climatic gradients and changes in the style and timing of glaciation, we focuses on a zone of climatic transition between the monsoon-influenced Lahul Himalaya, which forms the high, southern margin of the orogen and the semi-arid continental interior of the Transhimalaya, which spans the northeast margin of Lahul, Zanskar, and Ladakh in northern India (Fig. 1). Previous studies in Lahul and Ladakh utilizing optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) exposure dating methods reveal markedly different patterns of glaciation through time between Lahul and the Transhimalaya. In Lahul, glaciation was very extensive during the Lateglacial with an extensive valley glacier system filling the main trunk valleys for > 100 km (Owen et al., 1997, 2001). In contrast, in Ladakh, glaciers only advanced a few kilometers from their present positions during the Lateglacial (Owen et al., 2006). Studies in the Zanskar Himalaya indicate general glacial retreat throughout the Quaternary, but the details of these glaciations are sparse (Taylor and Mitchell, 2000).

Our two main areas of study are the Puga and Karzok valleys located in the Zanskar Range (Fig. 1). Moraines and associated landforms were studied in these two valleys to elucidate the style and timing of glaciation in this transitional zone between Lahul and Ladakh. Our study areas are separated by ~25 km (Puga to the north and Karzok to the south). This distance provides the spatial resolution that allows a test of whether there are any significant climatic gradients across the Zanskar Range. We may also be able to determine the location of the transition between more extensive ice systems, as were present in Lahul, to very restricted glaciation as in Ladakh. We utilize geomorphic mapping, remote sensing imagery, and 10Be
Figure 1. Location of study area in the northwest Himalaya of northern India. Box 1 - field area of Owen et al., 2006; box 2 - field area of Taylor and Mitchell, 2000; box 3 - field area of Owen et al., 1997 and 2001.
exposure dating to develop quantitative glacial chronologies that can be compared with previously established chronologies.

2. Regional setting

The Ladakh and Zanskar Ranges of the Transhimalaya, and the Pir Panjal and Greater Himalaya of Lahul are located at the western end of the Himalayan-Tibetan orogen. These mountain ranges rise from valleys with floors at ~3500 m above sea level (asl) to summits extending > 6000 m asl (Owen et al., 1997, 2006; Taylor and Mitchell, 2000). Closure of the Neo-Tethys Ocean and subsequent collision and partial subduction of the continental Indian plate beneath the Asian plate ~55 Ma resulted in the formation of the Zanskar Suture Zone (ZSZ) and the Indus-Tsangpo Suture Zone (ITSZ) between the Ladakh and Zanskar Ranges (Epard and Steck, 2008; Steck, 2003; Schlup et al., 2003) (Fig. 1). The ITSZ is the main boundary zone of the Indian and Asian plate collision (Searle et al., 1999). Lithotectonic units of the region are composed of metamorphosed sedimentary units of the Tethyan, Tetraogal, and Mata Nappes (Epard and Steck, 2008; Schlup et al., 2003; Steck et al., 1998) and well as granites and greenschist-facies lithologies of the Zildat and Nidar ophiolitic mélanges (Schlup et al., 2003; Steck et al., 1998).

Zanskar is a high-altitude desert (e.g. Bookhagen et al., 2005), but direct climate data measured from within the Zanskar Range are not available. Osmaston et al. (1994) suggest that data from the Leh weather station (34° 09’N, 77° 34’E, 3514 m asl; Fig. 1) is most representative of Zanskar’s climate. The thirty-year average annual precipitation at Leh is ~115 mm/yr with ~41% falling from July to September and ~35% falling from December to March (Osmaston, 1994; Taylor and Mitchell, 2000). However, Osmaston et al. (1994) present anecdotal data that suggest precipitation is higher, possibly 200-250 mm/yr (Osmaston et al., 1994). Precipitation at
altitudes < 5500 m asl may fall as rain, but above this elevation, it falls as snow (Ives and Messerli, 1989).

Leh, on the southern slope of the Ladakh Range, has January mean maximum and minimum temperatures of -2.8°C and -14.0°C, respectively, with a July mean temperature maximum of 24.7°C and a minimum of 10.2°C (Osmaston, 1994; Taylor and Mitchell, 2000). There is a strong temperature gradient with altitude (~1 °C increase per 170 m) and an increase of precipitation (not quantified) (Derbyshire et al., 1991).

Satellite Tropical Rainfall Measuring Mission (TRMM) data are available for the entirety of the Himalayan-Tibetan orogen through the National Aeronautics and Space Administration’s (NASA) Giovanni TRMM Online Visualization and Analysis System (TOVAS). Precipitation information plotted for the region outlined in Figure 1 illustrates the strong precipitation gradient from the southern to northern ranges (Fig. 2). The Puga and Karzok valleys are located within different precipitation ranges: the Puga valley receives 500-600mm/yr precipitation and the Karzok valley receives 600-700 mm/yr precipitation. In contrast, the TRMM data shows that the annual precipitation in Lahul is 800-900 mm/yr and the Ladakh Range receives 400-500 mm/yr precipitation.

Across the Transhimalaya, two-thirds of annual precipitation is supplied by the South Asian Monsoon during the summer, whereas the remaining one-third is brought by the mid-latitude westerlies during the winter (Benn and Owen, 1998; Murakami, 1987). Geochemical and paleontological studies of lake core records in Zanskar and Ladakh from Tso Kar (Demske et al., 2009) and Pangong Tso (Gasse et al., 1996), and in Tibet from Seling Co (Gu et al., 1993) and Sunxi-Longmu Co (Gasse et al., 1991; Van Campo et al., 1993) indicate that the strength of the south Asian summer monsoon has fluctuated considerably during the Late Quaternary (Gasse
Figure 2. Annual precipitation values for the overview map shown in Figure 1, averaged over a 30-year period. Map generated using TRMM data from the NASA Giovanni TOVAS utilizing data from January 1979 to June 2009. Box 1 delineates field area of Owen et al., 2006; box 2 delineates field area of Taylor and Mitchell, 2000; box 3 delineates field area of Owen et al., 1997 and 2001.
et al., 1996; Demske et al., 2009; Bookhagen et al., 2005), and at times of increased intensity may have contributed 40-100% more precipitation than today (Shi et al., 2001).

2.1 Previous glacial geologic studies

Studies in Lahul utilizing OSL and 10Be dating methods define four glacial stages: the Chandra, Batal (I and II), Kulti, and Sonapani (I and II) (Owen et al., 1995, 1997). During the Chandra glacial stage extensive valley glaciers advanced to elevations < 3800 m asl and extended >100 km from their present-day positions, but an absolute age for this glaciation has not yet been determined. Batal glacial stage (15.5-12 ka) ice reached to below 4000 m asl ~100 km from modern ice extent, but was limited to the main trunk valley. Kulti glacial stage (~11.4-10 ka) glaciers extended ~10 km from their present positions and were restricted to tributary valleys. The Sonapani glacial stage (a few hundred years ago) saw glaciers advancing < 5 km from the modern-day ice margin.

In the Zanskar Range, Osmaston (1994) used geomorphic methods to identify four glacial stages (M1-M4) but did not undertake any numerical dating. Mitchell et al. (1999) and Taylor and Mitchell (2000) later examined the glacial record in Zanskar using geomorphic mapping and OSL dating. They adopt the glacial stage names proposed by Owen et al. (2001) for Lahul and argued for extensive glaciation during the Chandra glacial stage in the Zanskar. Taylor and Mitchell (2000, 2002) cited the location of boulders on high rock benches > 70 km from the present-day ice margin and suggested they are Chandra glacial stage erratics. Taylor and Mitchell (2000, 2002) also suggested that during the Batal glacial stage glaciers were confined to tributary valleys and were sourced by the High Himalaya and the Nimaling massif, requiring glaciers to have extended ~30 km from their present-day positions. Taylor and Mitchell (2000) suggested that the Kulti stage glaciation was restricted to tributary valleys, reaching only ~15 km
from present-day positions. Sonapani glacial stage moraines are located < 5 km from present-day glacier termini, but Taylor and Mitchell (2000) did not undertake any numerical dating on these.

Adoption of Owen et al.’s (2001) Lahul-based glacial stage names for the Zanskar Range resulted in large contrasts between Lahul and the Zanskar Range glacial stages. Owen et al. (2002c) pointed out that the “erratics” described by Taylor and Mitchell (2000, 2002) are derived locally and many are non-glacial in origin. Taylor and Mitchell’s (2000) OSL dating of lacustrine sediments associated with Batal glacial stage deposits in the Zanskar Range provided an age of ~78 ka—markedly different from 10Be ages of moraine boulders from the Batal glacial stage in Lahul. Taylor and Mitchell (2000, 2002) acknowledged this but did not take into account the possibility that glaciation was asynchronous between Lahul and Zanskar, and Owen et al. (2002c). OSL dating of associated fluvioglacial sediments by Taylor and Mitchell (2000) date the Kulti glacial stage end moraines to ~16 and ~12 ka, which contrasts markedly with the Early Holocene 10Be ages for the Kulti glacial stage in Lahul (Owen et al., 2001). Using recessional moraines and associated landforms Taylor and Mitchell (2000) argued that the maximum extent of glaciers during the Kulti glacial stage occurred at ~13 ka with a late stage landform at ~10 ka. This contrast in ages illustrates the problems of using morphostratigraphy to correlate glaciation across mountain ranges.

The glacial chronology in the Zanskar Range was extended by Damm (2006) who recognized eight glacial advances in the Markha Valley and northern Nimaling Mountains on the basis of geomorphic evidence. Damm (2006) called these glacial advances, from oldest to youngest, the Skio I, Skio II, Chaluk, Hankar, Nimaling I, Nimaling II, Gapo Ri I/Dzo Jongo I/Kang Yaze and the Gapo Ri II/Dzo Jongo II/Tasken Ri II and correlated these with
chronologies established by Fort (1983) in the Ladakh Range. Damm (2006) also compared these to features described in Osmaston’s (1994) studies in the Zanskar Range and to chronologies in Lahul (Owen et al., 1995, 1997, 1998; Owen and Benn, 2005). No numerical dating was undertaken by Damm (2006).

The glacial geology of the southern slopes of the Ladakh Range was first studied by Fort (1983) and Burbank and Fort (1985) who presented evidence for at least four glacial advances. Later work by Owen et al. (2006) confirmed the evidence for four glacial advances and recognized a fifth, which they called the Bazgo glacial stage. Owen et al. (2006) summarized the evidence for glaciation on the southern slopes of the Ladakh Range and provided 10Be exposure ages to define the timing of glaciation. Their data showed that glaciers filled the Indus Valley during the oldest glacial stage (> 430 ka), the Indus Valley glacial stage, with glaciers extending > 100 km from their present positions. Owen et al. (2006) showed that glaciers extended to the mountain front of the southern Ladakh Range at an altitude of 3300-3600 m asl, ~20 km from the present glaciers, during the Leh glacial stage, between ~130 and 200 ka. These ages confirmed earlier-determined 10Be ages of Brown et al. (2002) on a moraine near Leh (recalculated to ~150 ka using the scaling models and production rates in this paper). A less extensive glacier advance, the Kar glacial stage, extended to 4300-4600 m asl, ~10 km from present ice margins and was dated by Owen et al. (2006) to the last glacial cycle, but due to data scatter could not be further constrained. The Bazgo glacial stage, was dated to 41-74 ka, and records a glaciation when glaciers extended to 4600-4800 m asl, < 10 km from the present glacier positions (Owen et al., 2006). Moraines of the Khalling glacial stage are present at 4950-5200 m asl, within ~5 km from the present glaciers, and likely formed during an Early Holocene glacier advance; however, insufficient data makes the age of the Khalling glacial stage tentative (Owen et al., 2006).
Reconstructions for former equilibrium-line altitudes (ELAs) for Lahul, Zanskar, and Ladakh are sparse owing to the lack of good topographic maps, the poor resolution on most remote imagery, and the lack of preservation of many of the glacial landforms. Nevertheless, Burbank and Fort (1985) presented ELA calculations for the southern slopes of the Ladakh Range and northern slopes of the Zanskar Range. Since they did not have any absolute dating they assigned moraines to stages based on position and characteristics such as boulder and moraine weathering. Burbank and Fort (1985) note two major glacial moraines in both the southern Ladakh and the northern Zanskar and attribute them to the Leh glacial stage, and suggested that these formed during the late Pleistocene maximum advance; the Kar glacial stage was the recessional stage representing a retreat of ice during the Lateglacial. Leh glacial stage moraines in Ladakh extend ~15 km downvalley from the 1985 ice margin and Kar glacial stage moraines reach ~8 km downvalley. Zanskar moraines indicate more restricted glaciation; Leh glacial stage moraines are located at ~10 km from the 1985 glacial margin with the Kar glacial stage moraines located ≤ 5 km from the 1985 ice margin. ELA depressions for the Ladakh Range and the Zanskar Range calculated from the Leh stage moraine by Burbank and Fort (1985) are 900-1000 m and only 500-600 m, respectively.

Damm (2006) also reconstructed ELAs within the Zanskar Himalaya but they are difficult to directly compare with exact dating of glacial moraine boulders. Damm showed ELA depressions > 1000 m asl in the Skio I and Skio II stages with progressively lower values through time: 670 m asl during the Chaluk, 510 m asl during the Hankar, 400 m asl during the Nimaling I, 350 m asl during the Nimaling II, and ELA depressions < 70 m asl for the Gapo Ri I/Dzo Jongo I/Kang Yaze and Gapo Ri II/Dzo Jongo II/Tasken Ri II stages. These ELA depression values chronicle progressively more restricted glaciation over time in Zanskar.
Former ELAs were not calculated for the Puga or Karzok valleys because glacial landforms are not preserved. Furthermore, it is difficult to use ELA to quantify the magnitude of glaciation in high mountain regions due to complicating factors on mass balance such as snow input from avalanching, debris cover, and topographic effects (Benn and Lehmkuhl, 2000). Future studies might utilize better-preserved moraines in order to reconstruct former ELAs.

3. Methods

3.1 Field methods

Landforms in the Puga and Karzok valleys were identified and mapped in the field aided by topographic maps generated from a 3 arc-second (~90 m) Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) (CGIAR, 2004). Present-day glacier locations and extents were determined by analysis of NASA Worldwind (NASA, 2006) and Google Earth imagery (Google, 2009).

Moraines were divided on the basis of morphostratigraphy in both study areas. Moraines that preserved their original morphology were chosen in preference to degraded moraines for \(^{10}\)Be dating. Three to seven moraine boulders were sampled for \(^{10}\)Be dating from each moraine to determine the age of the moraine. Most of the sampled boulders are composed of granite, but other quartz-rich lithologies were also sampled such as granodiorite and augen gneiss, and where possible, large, unweathered, tabular boulders >1 m long with well-developed rock varnish and inset into the moraine were chosen in preference to those that showed signs of weathering and/or toppling. Horizontal, flat-topped and debris-free boulders were selected to avoid the need for shielding corrections; however, five boulders (India-45, India-47, India-52, TM-B, and TM-C) required shielding corrections for sloping surfaces.
Using a hammer and chisel, approximately 500g of material was collected from each boulder; the sampled depth was 1 to 5 cm. The characteristics of the boulder, including lithology, size, shape, emplacement, rock varnish, angle of sampled surface, and topographic shielding were recorded. Topographic shielding was determined by taking inclination measurements from the boulder surface to the surrounding summits and ridges. Photographs were taken of the boulders and sampling sites (Appendix-A). The location of each boulder was recorded using a hand-held Garmin GPS60.

3.2 10Be surface exposure age dating

Purification of quartz, chemical separation of Be, and cathode preparation followed the methods described in Kohl and Nishiizumi (1992) and Dortch et al. (2008). Puga samples (India-10 to India-20 and India-45 to India-55) were processed in the geochronology laboratories at the University of Cincinnati. Karzok samples (TM-B to TM-F and TM-1 to TM-20) were processed at Korea University. All samples were loaded into steel cathodes. The Puga valley samples were measured at the Purdue Rare Isotope Measurement (PRIME) Lab and the Karzok valley samples were measured at the Accelerator Mass Spectrometry Laboratory at the Korea Institute of Geosciences and Mineral Resources using Accelerator Mass Spectrometry (AMS).

10Be exposure ages were calculated using the CRONUS 10Be-26Al exposure age calculator (version 2.2, Balco, 2009; Table 1), which utilizes Lal’s (1991) and Stone’s (2000) scaling factors. CRONUS also allows 10Be exposure age calculations based on the scaling factors of Desilets et al. (2006), Dunai (2001), and Lifton et al. (2005). In this paper we use the Lal (1991) and Stone (2000) model. The maximum difference between the exposure ages using the Lal (1991) and Stone (2000) scaling algorithms compared to exposure ages calculated using
<table>
<thead>
<tr>
<th>Sample name</th>
<th>Location</th>
<th>Relative Age</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Altitude (m asl)</th>
<th>Boulder weathering characteristics</th>
<th>Lithology</th>
<th>Sample thickness (cm)</th>
<th>Topographic shielding factor</th>
<th>Sample thickness (cm)</th>
<th>Minimum 10Be exposure age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>India-45</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.166</td>
<td>5266</td>
<td>175 110 120</td>
<td>SW granite</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>4.25 ± 0.48</td>
<td>0.42 ± 0.05</td>
</tr>
<tr>
<td>India-46</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.167</td>
<td>5265</td>
<td>170 190 170</td>
<td>SW/MB gneiss</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>1.42 ± 0.37</td>
<td>0.16 ± 0.03</td>
</tr>
<tr>
<td>India-47</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.167</td>
<td>5257</td>
<td>170 130 135</td>
<td>SW granite</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>12.24 ± 0.67</td>
<td>1.126 ± 0.11</td>
</tr>
<tr>
<td>India-48</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.167</td>
<td>5267</td>
<td>185 90 95</td>
<td>SW/SB gneiss</td>
<td>2</td>
<td>1.00</td>
<td></td>
<td>10.55 ± 0.67</td>
<td>0.926 ± 0.09</td>
</tr>
<tr>
<td>India-49</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.167</td>
<td>5260</td>
<td>155 110 125</td>
<td>SW granite</td>
<td>4</td>
<td>1.00</td>
<td></td>
<td>2.04 ± 0.49</td>
<td>0.227 ± 0.04</td>
</tr>
<tr>
<td>India-50</td>
<td>PM-3</td>
<td>33.226</td>
<td>78.167</td>
<td>5265</td>
<td>80 50 100</td>
<td>SW granite</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>2.20 ± 0.51</td>
<td>0.243 ± 0.04</td>
</tr>
<tr>
<td>India-10</td>
<td>PM-2</td>
<td>33.245</td>
<td>78.200</td>
<td>4910</td>
<td>250 180 135</td>
<td>SW/SB gneiss</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>62.54 ± 3.21</td>
<td>6.859 ± 0.69</td>
</tr>
<tr>
<td>India-11</td>
<td>PM-2</td>
<td>33.245</td>
<td>78.201</td>
<td>4905</td>
<td>270 220 140</td>
<td>MW/SB quartzite</td>
<td>2</td>
<td>1.00</td>
<td></td>
<td>42.94 ± 2.96</td>
<td>4.718 ± 0.54</td>
</tr>
<tr>
<td>India-12</td>
<td>PM-2</td>
<td>33.245</td>
<td>78.201</td>
<td>4904</td>
<td>450 420 170</td>
<td>SW/MB granite</td>
<td>2</td>
<td>1.00</td>
<td></td>
<td>10.84 ± 1.97</td>
<td>2.27 ± 0.29</td>
</tr>
<tr>
<td>India-13</td>
<td>PM-2</td>
<td>33.245</td>
<td>78.201</td>
<td>4895</td>
<td>280 200 170</td>
<td>SW quartzite</td>
<td>2</td>
<td>1.00</td>
<td></td>
<td>107.50 ± 7.55</td>
<td>33.84 ± 3.08</td>
</tr>
<tr>
<td>India-14</td>
<td>PM-2</td>
<td>33.244</td>
<td>78.202</td>
<td>4886</td>
<td>270 120 100</td>
<td>MW/SB metagranite</td>
<td>2</td>
<td>1.00</td>
<td></td>
<td>5.45 ± 1.22</td>
<td>0.596 ± 0.14</td>
</tr>
<tr>
<td>India-15</td>
<td>PM-2</td>
<td>33.244</td>
<td>78.202</td>
<td>4924</td>
<td>170 110 90</td>
<td>SW/DB granite</td>
<td>3</td>
<td>1.00</td>
<td></td>
<td>31.11 ± 0.96</td>
<td>3.157 ± 0.29</td>
</tr>
<tr>
<td>India-16</td>
<td>TM-20</td>
<td>32.961</td>
<td>78.254</td>
<td>4713</td>
<td>61 52 57</td>
<td>HW/SB quartzite</td>
<td>5</td>
<td>1.00</td>
<td></td>
<td>2136.97 ± 25.28</td>
<td>313.98 ± 29.85</td>
</tr>
<tr>
<td>India-17</td>
<td>TM-20</td>
<td>32.961</td>
<td>78.254</td>
<td>4712</td>
<td>52 49 49</td>
<td>HW/DB quartzite</td>
<td>5</td>
<td>1.00</td>
<td></td>
<td>2099.21 ± 17.71</td>
<td>308.09 ± 29.11</td>
</tr>
<tr>
<td>India-18</td>
<td>TM-20</td>
<td>32.961</td>
<td>78.254</td>
<td>4712</td>
<td>61 52 57</td>
<td>HW/SB quartzite/vein</td>
<td>5</td>
<td>1.00</td>
<td></td>
<td>2136.97 ± 25.28</td>
<td>313.98 ± 29.85</td>
</tr>
<tr>
<td>India-19</td>
<td>TM-20</td>
<td>32.961</td>
<td>78.254</td>
<td>4708</td>
<td>38 35 42</td>
<td>HW/SB quartzite/vein</td>
<td>5</td>
<td>1.00</td>
<td></td>
<td>1384.79 ± 29.55</td>
<td>197.93 ± 18.63</td>
</tr>
</tbody>
</table>

Boulder weathering characteristics: SW - Slightly weathered, MW - Moderately weathered, HW - Highly weathered, SB - Slightly buried, MB - Moderately buried, DB - Deeply buried.

Production rate for the CRONUS calculator is a sea-level low-latitude production rate of 4.5±0.3 m²/10⁶ years/grains SiO₂/year and a 10² Be half-life of 1.36 Ma.

Isotope measurements were calibrated using KN Standard Be 0152 with a 10² Be/1⁰ Be ratio of 8.558x10⁻¹² (c.f. Nishiizumi et al., 2007).
the Desilets et al. (2006), Dunai (2001), and Lifton et al. (2005) scaling schemes is ~9%, with an mean of ~4% for all samples.

No correction is made for boulder erosion or snow cover, so 10Be ages are minimum ages. No corrections for variations in the geomagnetic field have been applied since appropriate corrections are still under debate (Balco et al., 2008). Owen et al. (2008a) have recently discussed geomagnetic variations and their effects on 10Be ages, specifically for the Himalaya, highlighting that the range of different scaling models can change calculated 10Be ages by as much as 14%. However, systematic corrections for geomagnetic field variations would not likely affect correlation between landforms in adjacent regions.

AMS measurements report both internal (essentially analytical) and external (analytical and production rate uncertainty) error at 1 σ. The larger of the two errors (external) was taken for each sample to ensure greatest certainty. The 10Be ages for each moraine boulder were assessed using the Mean Standard Weighted Deviation (MSWD) methods of McDougall and Harrison (1999) to test whether they could statistically represent one population or event. McDougall and Harrison (1999) remove outliers from the dataset until a statistical indicator of ≤ 1 is reached, with a minimum of three data points required to constitute a population. We use a statistical indicator of ≤ 1 as the cutoff value for a viable population. To examine ages consistently, 2σ error was used to statistically determine boulder outliers within a moraine sample set. Boulders with ages that did not overlap with 2σ error were considered outliers and were removed from the dataset. The average of the remaining data points was taken to determine the moraine surface age.
4. Study areas

Both the Puga and Karzok valleys are located in western Zanskar, southeast of Leh, south of the Indus River along the southeastern side of the Zanskar Range. The Puga valley is located within the northwest-southeast trending Tso Morari dome along the dome’s northeastern margin. The Tso Morari dome exposes ultra-high pressure metamorphic rocks (de Sigoyer et al., 1997; Guillot et al., 1997) composed principally of granite and granodioritic orthogneisses and meta-basic rocks. The Puga valley forms a half-graben, one of a series of grabens and half-grabens extending across the Transhimalaya in Zanskar, recording post-middle Miocene extension (Steck, 2003; Thiede et al., 2006) and marked by asymmetric valley walls, lakes, and hot springs. The Karzok valley is located along the southwestern flank of the dome in metasedimentary rocks of the Mata nappe that overlie orthogneisses exposed in the dome core.

The Puga valley is located ~115 km southeast of Leh and rises from a valley floor at ~4500 m asl to high peaks ~6000 m asl (Fig. 1 and 3). Tso Kar (Tso = lake), a salt lake which drains east through the Puga valley in times of high water (e.g. Rawat and Adhikari, 2005) is located to the west of the Puga valley. The Puga valley is ~15 km long and contains the Puga River, a small river that drains to the east. The Puga River joins with an un-named river draining Kiagar Tso to form a freshwater lake located to the south of the village of Sumdo. The Puga River continues to flow east, where it joins with the Indus River. Within the Puga valley, the Puga River helps form marshes and low-flow areas due to the contribution of various hot springs in the valley floor in central Puga (e.g. Azeez and Harinarayana, 2007; Singh et al., 2005). River flow intensifies daily and seasonally with snow and ice melt from tributary valleys.

The Puga valley and its tributaries contain abundant glacial and fluvial landforms
Figure 3. Puga Valley moraine locations and sampling sites.
including moraines, polished bedrock, glacial benches, hummocky terrain, and alluvial fans. In the east, the valley floor is level and is ~1 km wide, while to the west the valley floor becomes progressively narrower and uneven due to accumulations of unconsolidated debris. At its western end the Puga River has incised ~30 m through debris to form a deep gorge and ~2 km to the west of this point a large (~10 km long) tributary valley on the southern side of the main valley contains an impressive set of moraines where boulders were sampled (Fig. 4).

The Karzok valley is located ~25 km south of the Puga valley. The primary drainage of the Karzok valley follows the southern valley wall and is joined by tributary meltwater streams. These streams converge in the south-central portion of the valley and flow from west to east into Tso Moriri, a high-altitude, brackish lake set in a glacial depression (Negi, 2002). This lake has no outlet. The valley is bounded on its western side by a normal fault. Springs are present in many areas of the Karzok valley, primarily in the main east-west trunk valley, that also contribute to the valley’s primary river. At its longest (trending southeast to northwest) the valley stretches for ~11 km. The Karzok valley floor is at an altitude of ~4500 m asl and surrounding peaks rise to ~6000 m asl. Glacial and fluvial landforms dominate the landscape; the most common are large alluvial fans and extensive hummocky moraines. Moraines were sampled near the town of Karzok at the mouth of the valley and in a 4-km-long tributary valley located ~4 km to the west of Karzok.

Modern glaciers are present in many of Puga’s and Karzok’s tributary valleys at elevations > 5000 m asl. Most glaciers are < 3 km and commonly < 2 km long. Glaciers in the tributary valleys of Puga are typically smaller than those in the tributary valleys of Karzok. Some glaciers in the tributary valleys of Puga are debris-mantled and extend down to 4600 m asl.
Figure 4. Puga Valley moraines and sampled boulders. A) PM-0 moraine, sample India-13, view to the north showing surrounding moraines, B) PM-1 moraine, sample India-54, view to the west showing typical boulder size and abundance, C) PM-2 moraine, view to the south (no boulders were sampled in this view), D) PM-3 moraine showing the boulder for sample India-48 viewed to the west and showing valley profile in background.
5. Landform descriptions

5.1 The Puga valley

The Puga valley contains four distinct moraines. From the oldest to youngest we name these moraines: PM-0; PM-1; PM-2; and PM-3. The PM-0 moraine (Fig. 3, location A) trends generally northwestward and is located at the confluence of a tributary and the main Puga Valley.

The PM-0 (Fig. 3, 4) moraine is sharp crested and stretches for ~60 m along its length. PM-0 has low relief; it is ~2 m high and ~3 m wide with slopes of ~4°. PM-0 is most likely a lateral moraine due to its nearly straight morphology and its position adjacent to the valley wall. The moraine is composed of a high concentration of large boulders 1- to 2-m-long at ~1 large boulder per 5 m moraine length, as well as abundant smaller boulders (40- to 60-cm-long). The PM-0 moraine overlies alluvial outwash fan deposits. Less-distinct, discontinuous ridges appear on either side of the PM-0 moraine. The moraine was formed by a glacier that advanced down the main valley from the northwest.

The PM-1 moraine is a lateral moraine (Fig. 3, location B, Fig. 4) and forms a distinctive southwest-trending ridge which rises ~3 m. The sampled section of the moraine is ~200 m long and ~6 m wide. Up-valley from the sampling locations, the moraine ridge becomes less distinct as it onlaps the valley wall and downvalley as it trends into hummocky terrain. Boulders on this moraine are generally smaller than those on the PM-0 and PM-2 moraines (<2 m) and larger boulders with an axis >1.5 m long are less abundant. Moraine PM-1 has ~2 large boulders per 10 m of moraine length.

The PM-2 moraine (Fig. 3, location C, Fig. 4) is located ~200 m up-valley from PM-0 and ~0.5 km down-valley from the PM-1 moraine, and is < 2 m high and ~4 m wide, and slopes
at ~4° to the north. PM-2 most likely represents a latero-frontal moraine. The moraine stretches for ~60 m and is covered with large, 2- to 3-m-long boulders. The moraine becomes difficult to distinguish as it onlaps the northwestern valley wall. Boulders become generally larger and more abundant farther from the valley walls, near sample locations India-12, India-13, and India-14. The PM-2 moraine was formed by a glacier that originated from the southwest.

The PM-3 moraine (Fig. 3, location D, Fig. 4) is an arc-shaped ridge that rises ~2 m and is ~8 m wide, and is broadly perpendicular to the valley walls. Large boulders on the PM-3 moraine are more abundant than on the PM-1 moraine, and boulders in general (small, moderate, and large) are more abundant than on all other moraines. The northwestern edge of the moraine onlaps the valley wall and becomes less distinct up-valley. The moraine is located in the same tributary valley as the PM-1 and PM-2 moraines, and was sourced from the same up-valley glacier.

5.2 The Karzok valley

The Karzok valley contains a distinct moraine that is the oldest, named KM-0, and two large moraine complexes. The KM-0 moraine (Fig. 5, location A, Fig. 6) is located ~4 km to the east of the younger moraine complexes, near the village of Karzok at the far eastern end of Karzok valley, ~600 m west of Tso Moriri (Fig. 5). The KM-0 moraine is a lateral moraine located on a gently sloping ridge ~30 m above the valley floor. The moraine is intensely weathered with low relief, rising to ~0.5 m. Several streamlined bullet-shaped boulders are present on the surface of the moraine.

The larger moraine complex was sampled on three moraines that form distinct ridges (KM-1, KM-2, and KM-3) (Figure 5, location B). The KM-1 moraine (Fig. 5, 6) is a sharp-crested lateral moraine ~1 km long, ~10 m high and ~13 m wide. Large boulders > 1.5-m-long,
Figure 5. Karzok Valley moraine locations and sampling sites.
Figure 6. Karzok Valley moraines and sampled boulders. A) KM-0 moraine showing the boulder for sample TM-18 viewed to the north showing low relief and deflated nature of moraine, B) KM-1 moraine showing the boulder for sample TM-14 viewed to the west showing steep moraine sides, C) KM-2 moraine showing the boulder for sample TM-7 viewed to the south, D) KM-3 moraine showing the boulder for sample TM-1 viewed to the west, E) KM-4 moraine viewed to the west illustrating typical boulders.
smaller boulders, and cobbles are present on its surface. Most of the boulders are highly weathered and are covered with abundant lichen.

The KM-2 moraine (Fig. 5, 6) is a latero-frontal moraine that is located ~30 m to the south of the KM-0 moraine. The moraine is sharp-crested but the outer (northern) side is much more subdued, and gentler than the inner, southern side. Most of boulders are severely weathered and low-lying. Large boulders (>1.5 m) are relatively common on the western end of the moraine where there is ~1 boulder per 5 m of moraine length, but boulders become rarer east of the sampling site TM-8 (Fig. 5). Moderate sized boulders ~0.5 m long are much more common and persist over the entirety of the moraine.

The KM-3 moraine (Fig. 5, 6) is a latero-frontal moraine, located ~800 m from the present glacier. The moraine is ~1 m high and ~6 m wide. Large boulders are rare, with the most common boulder size being ~1 m long. Moderate-sized boulders, cobbles, and pebbles are also abundant on this moraine, and are very weathered.

The KM-4 moraine (Fig. 5, location C, Fig. 6) is a sharp-crested frontal moraine and is located ~0.5 km from the present glacier. Large boulders (> 1 m long), small angular boulders and cobbles are present on the surface of the moraine and most do not show any significant signs of weathering.

6. Ages of landforms

Sample data and exposure age results and are listed in Table 1 and presented in Figure 7. These data are grouped by the age of each moraine.

6.1 The Puga valley

Moraines sampled in the Puga valley are distinct and physically separate, with many large boulders available for sampling. 10Be ages for the Puga samples cluster well within each
Figure 7. ^{10}Be boulder age plotted by relative age and study area.
moraine, with few outliers. The data agree with the morphostratigraphy of the moraines, with the outermost moraines having the oldest ages and successive moraines up-valley having progressively younger ages. The PM-1 lateral moraine, although farther up-valley than the younger PM-2 end moraine, is located closer to the valley wall and is thus morphostratigraphically older than PM-2. The 10Be ages support this stratigraphic interpretation.

The 10Be ages for the PM-0 moraine boulders cluster between \sim109 and 119 ka, with a mean exposure age of \sim116.2±11.2 ka. Four of the five dated boulders for the PM-1 moraine cluster between \sim32 and \sim50 ka with an average of \sim41±3.7 ka, with an outlier (India-51) of \sim105 ka. The 10Be ages for PM-2 moraine boulders cluster between 6.9 and 0.6 ka, with an outlier (India-13) age of \sim34 ka. For the PM-2 moraine, the boulder average exposure age is 3.3±0.4 ka. The PM-3 moraine boulders have 10Be ages that cluster between 0.2 and 0.9 ka, with an outlier (India-47) age of 1.1 ka. Excluding the outlier, the average of the boulder ages for moraine PM-3 is 0.5±0.1 ka.

6.2 The Karzok valley

The moraines in the Karzok valley are large and complex. 10Be ages for boulders on the moraine complexes do not conform well to a singular, defined age. However, sample sets from well-defined and separate, single moraines (KM-0 and KM-4) cluster relatively well.

The three boulders sampled from the geomorphically distinct moraine KM-0 contain one outlier; the mean age (excluding the outlier) is 311.0±29.5 ka, with an outlier (TM-20) age of 198 ka. Boulders were sampled from the distinct ridges on the moraine complex: six from KM-1, six from KM-2, and four from KM-3. When considered separately, boulder ages from these moraine ridges cluster poorly and allow for little interpretation. KM-1 has a two-boulder cluster at \sim54 ka to \sim76 ka, and a three-boulder cluster at 12.5 to 14.3 ka with an outlier (TM-15) age of
~135 ka. KM-2 has two clusters of three boulders at ~74 to ~98 ka and ~21 to ~27 ka, with no outlier ages. KM-3 shows a three-boulder cluster at ~60 to ~89 ka with the youngest boulder as an outlier (TM-4) age of ~33 ka. Four boulders were sampled from the sharp-crested frontal moraine KM-4 and age results show a cluster of three boulders from 2.7 to 4.7 ka with an outlier (TM-C) age of 21.3 ka. The average for these boulders returns an age of 3.6±0.7 ka.

6.3 Further considerations

The Puga valley exposure ages return approximate average moraine ages of 116.2 ± 11.2 ka, 41.4 ± 3.7 ka, 3.3 ± 0.4 ka, and 0.5 ± 0.06 for moraines PM-0, PM-1, PM-2, and PM-3, respectively (Table 1). 10Be ages for the KM-0 and KM-4 moraines in the Karzok valley are 311.0 ± 59.0 ka and 3.6 ± 0.7 ka, respectively (Table 2). The 10Be age distributions for the KM-1, KM-2, and KM-3 ridges are complex and a separate age for each of these moraines cannot be assigned with confidence.

Considered separately, the exposure ages of boulders from KM-1 and KM-3 have considerable scatter and do not pass our statistical test for a single age. There is no clustering of remaining boulder ages with 2σ outliers removed. These features cannot be dated using the samples we collected. However, the MSWD analysis of KM-2 alone shows a boulder population at 23.8 ka. Notably, boulders sampled from KM-1, KM-2, and KM-3 show apparent clusters represented on each moraine at ~20 ka and ~80 ka (Fig. 7).

In combination with geomorphic evidence and the boulder ages, it is possible that ridges KM-1, KM-2, and KM-3 form a large moraine complex resulting from slow glacial retreat or deposition similar to that of push moraines. If boulders from each ridge are grouped together into a single sample set, MSWD populations show two ages for the moraine complex as a whole;
four boulders (TM-7, TM-8, TM-10, and TM-17) form a population at ~24 ka and five boulders (TM-1, TM-3, TM-6, TM-11, and TM-16) form a population at ~79 ka.

Although 10Be ages do not allow us to confidently define the ages of these moraines individually or as a complex, all boulders on the three moraines also fall within 2σ of the 23.7 ka and 78.6 ka age brackets, which suggests there may be some significance to the age populations. If so, the data that suggest two age clusters may represent one of the following: boulders with the older age (~79 ka) represents approximate initial moraine stabilization with younger boulders (~24 ka) having been exhumed later; boulders with the older age represent remnants of a previous glacial advance which were exhumed by a later glacial advance at ~24 ka; or each age set represents two separate stages of moraine stabilization.

Older 10Be age outliers, especially those from the Puga and Karzok moraines, may be due to incorporation of old boulders in a glacially active landscape. Of the two younger outliers located on the KM-0 (TM-20) and KM-3 (TM-4) moraines, the KM-3 moraine boulder fits into MSWD-deduced population at 23.7 ka. This boulder could also represent an unearthed boulder through moraine settling or a boulder more susceptible to erosion, however, greater erosion is not likely on the TM-4 boulder because it is the same lithology as moraine boulders TM-1 and TM-2, which return much older ages.

7. Discussion

10Be ages for moraine boulders in the Puga valley show clear age clusters for each sampled moraine. In contrast, the 10Be age distribution for boulders collected from the Karzok valley moraines are complex with a large range of ages on individual moraines. KM-4 and PM-2 correlate well between the valleys with ages at 3.6±0.7 and 3.3±0.4 ka, respectively. However,
the record of the oldest Karzok moraine (TM-0, ~311 ka) is asynchronous with the oldest Puga moraine (PM-0, ~116 ka). Correlation between the valleys is limited.

The PM-0 moraine is flanked on both sides by smaller ridges, possibly indicative of a push moraine due to a small advance during dominant retreat of the ice margin. If boulders on the morphostratigraphically younger ridges to the southwest of PM-0 were dated, it is possible that their ages would correlate with the KM-1, KM-2, and KM-3 moraines of Karzok. Without dated boulders from a ridge adjacent to PM-0 and a better understanding of the data from KM-1, KM-2, and KM-3, however, this can only be speculation.

Boulder ages for the moraine complex in the Karzok valley (KM-1, KM-2, and KM-3) suggest that glaciers advanced at ~80 ka and/or ~20 ka. However, given the spread of ages on individual moraines, it is not possible to provide precise and accurate ages for these moraines. Nevertheless, Taylor and Mitchell (2000) showed that a glacial advance occurred elsewhere in the Zanskar at ~78 ka, and it seems reasonable to argue that our ~80 ka also argues for a glacial advance at ~80 ka. Moraines dated in Ladakh (Owen et al. 2006) also have some boulders from ~80 ka, but once again, scatter in their dataset does not allow for confident definition of glacial advance/retreat at that time, although the coincidence in ~80 ka is striking.

Current data for the Puga and Karzok valleys suggest a gap in the glacial record during the early Holocene (Fig. 8). The obvious gap in the Puga and Karzok records also contrasts markedly with the glacial record for Lahul to the south. Kulti and Batal stage glaciations in Lahul (Owen et al., 1997) show advance at 11.4-10 ka and 15.1-12 ka, respectively, during which time there is no evidence for glacial advance in either the Puga or Karzok valleys. Taylor and Mitchell (2000), however, discuss records indicating advance between 16-12 ka which overlaps with the Lahul record. In the Ladakh Range to the north, the Khallling stage moraine
Figure 8. Comparison figure of glacial timing and extent in Lahul, Zanskar, and Ladakh. Lahul data are from Owen et al. (1997; 2001), Zanskar data from Taylor and Mitchell (2000) and this study, and Ladakh data are from Brown et al. (2002) and Owen et al. (2006). Glaciation extents are relative with approximate extents beyond the present ice margin listed to the right of the advance curve. Dashed lines indicate a glacial advance of undated age. Glacial stages shown in italics were assigned by Taylor and Mitchell (2000) by relative dating to Owen et al.’s (1997, 2001) chronology for Lahul. These stage names must be revised in light of the discussion presented in Owen et al. (2002)
could not be confidently dated to the early Holocene due to an inadequate number of sampled boulders (Owen et al., 2006).

Owen et al. (2006) and Owen (2009) discuss early Holocene advances in other regions of the Himalaya, including the studies of Barnard et al. (2004a, b) in the Garwhal, south of Lahul, Khumbu Himal to the far east of Lahul (Finkel et al., 2003), and the Karakoram located to the north of the Ladakh Range (Owen et al., 2002c). Early Holocene glaciation is common in many Himalayan records but is not apparent in the Puga or Karzok valleys and may or may not have occurred in the Ladakh Range. Although further study is needed to constrain the timing of the Khalling stage Ladakh glaciation, the records at Puga and Karzok suggest no extensive glaciation at that time. Evidence for Early Holocene glaciation is also lacking on the northern side of Mount Everest in the Rongbuk Valley (Owen et al., 2009). Although it is possible that Early Holocene glacial landforms have not been preserved, Owen et al. (2009) suggest this is not likely and argue that the topography was too great to allow penetration of an enhanced monsoon north of Mount Everest during the Early Holocene. The lack of an Early Holocene glacial advance in Zanskar might reflect similar topographic controls. However, Owen et al. (2006) argue that the Khalling glacial stage in the Ladakh Range is Early Holocene and this is clearly to the north of our study area and more distance from monsoon influences.

Glacial records in Lahul and the Zanskar Range indicate a major change in style in glaciation from Lahul to Zanskar: Lahul glaciations were very extensive in the Chandra and Batal stages, reaching ≥ 100 km from present-day glacial margins before decreasing dramatically in extent (~10 km) during the Kulti stage. Based on this study and work by Taylor and Mitchell (2000, 2002) and Owen et al. (2002c), Zanskar glaciers did not extend beyond ~50 km from present-day ice margins, and were restricted to ~30 km. Zanskar glacial timing may be more
similar to glaciation in Ladakh (Owen et al., 2006), however, the deposition dates of the moraines need to be better constrained for more robust comparisons (Fig. 8). In addition, Zanskar glaciation was not as extensive as glaciation in Ladakh, in which Indus stage glaciation advanced » 50 km and filled the Indus Valley.

The glacial records in our study area are more similar to those of the Ladakh Range (Fig. 8). This greater similarity between the glacial records in our study areas suggest that the transition to the pattern of glaciation that characterizes Lahul must be to the south of the Karzok valley and that this transition is geographically very abrupt.

8. Conclusions

This study presents the first quantitative glacial chronology for the Puga and Karzok valleys along the southeastern flank of the Zanskar Range of northern India. This study provides an initial framework for understanding the glacial records south of the Indus River in eastern Zanskar and will aid in understanding the nature of glaciation in the Himalayan-Tibetan orogen as a whole. While it is not possible to determine the existence or location in climatic gradient across the Himalaya based on this study alone, comparison with previous studies in the Ladakh and Zanskar Ranges and in Lahul to the south indicates similarities and notable differences in the glacial records among these areas. Our study suggests that such a transition occurs south of the Karzok valley and that it is geographically very abrupt.

Glacial advances in the Puga and Karzok valleys appear to be largely asynchronous, although data from key moraines (KM-1, KM-2, and KM-3) are difficult to interpret. A correlation of glacial advance between the valleys at ~3 ka (PM-2 and KM-4) is apparent, but the record based on 10Be exposure age dating otherwise shows few similarities. More accurate
dating of the KM-1, KM-2, and KM-3 moraine complex may result in a better understanding of the relationship in glaciation style between the two study valleys.

Moraine ages for the Karzok valley largely agree with the established glacial record in the Zanskar Range as studied by Taylor and Mitchell (2000), whereas ages from the Puga valley do not correlate as well. Additionally, the distinct lack of early Holocene glacial advances in both the Karzok and Puga valleys contrasts with studies in many other areas of the Himalaya (Barnard et al., 2004b; Barnard et al., 2004b; Finkel et al., 2003; Owen et al., 2001). Additionally, the pattern of glaciation in the Puga and Karzok valleys differs markedly from the southern ranges of Lahul and the Ladakh Range. Lahul glaciers advanced >100 km with evidence for only a few glacial stages which rapidly decrease to ~10 km in length and there were possibly large gaps in time between glaciations. Glaciation in the Ladakh Range was restricted to small advances of <10 km beyond the present ice margins during the past ~430 ka, but prior to this glaciers were much more extensive (>50 km).

Both the Puga and Karzok valleys of the Zanskar Range, as well as Zanskar Range locations studied by Taylor and Mitchell (2000), reveal glacial advances ≥10 km from the present-day ice margin, but none > 30 km. Despite their relatively short advance distance, these are moraines of significant antiquity (>300 ka), exceeding the age of the oldest dated materials in Lahul and Ladakh.

These data suggest that the region from northern Lahul northwards across the Zanskar and Ladakh Ranges further interest and importance in investigating former climatic gradients and their influence on glaciation. In particular, detailed glacial chronologies throughout the whole Zanskar Range need to be improved to more adequately discuss understand the influences of topography and the relative roles of different climatic systems in the Himalayan-Tibetan orogen.
References

Damm, B., 2006. Late Quaternary glacier advances in the upper catchment area of the Indus River (Ladakh and Western Tibet). Quaternary International 154-155, 87-89.

Van Campo, E., Gasse, F., 1993. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quaternary Research 39, 300-313.
<table>
<thead>
<tr>
<th>Moraine PM-0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>India-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.247, 78.203 Elevation: 4863 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 330 x 190 x 120 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Granite</td>
</tr>
<tr>
<td></td>
<td>Notes: Moderately buried, heavy desert varnish</td>
</tr>
<tr>
<td></td>
<td>People for scale</td>
</tr>
<tr>
<td>India-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.248, 78.202 Elevation: 4802 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 310 x 130 x 100 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Quartzite</td>
</tr>
<tr>
<td></td>
<td>Notes: Deeply buried, heavy desert varnish, very hard, difficult to sample</td>
</tr>
<tr>
<td></td>
<td>People for scale</td>
</tr>
<tr>
<td>India-17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.248, 78.202 Elevation: 4861 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 270 x 160 x 65 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Quartzite</td>
</tr>
<tr>
<td></td>
<td>Notes: Slightly buried, heavy desert varnish, very hard, difficult to sample</td>
</tr>
<tr>
<td></td>
<td>Field notebook for scale (circled)</td>
</tr>
<tr>
<td>India-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.248, 78.202 Elevation: 4863 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 210 x 110 x 70 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Quartzite</td>
</tr>
<tr>
<td></td>
<td>Notes: Not buried, moderate desert varnish</td>
</tr>
<tr>
<td></td>
<td>Person and field notebook for scale</td>
</tr>
<tr>
<td>India-19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.249, 78.200 Elevation: 4875 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 400 x 220 x 110 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Granite</td>
</tr>
<tr>
<td></td>
<td>Notes: Slightly buried, slight desert varnish, unevenly weathered</td>
</tr>
<tr>
<td></td>
<td>Person for scale</td>
</tr>
<tr>
<td>India-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: 33.249, 78.200 Elevation: 4876 m</td>
</tr>
<tr>
<td></td>
<td>Dimensions: 410 x 270 x 140 cm</td>
</tr>
<tr>
<td></td>
<td>Lithology: Granite</td>
</tr>
<tr>
<td></td>
<td>Notes: Deeply buried, exfoliated, slight desert varnish</td>
</tr>
<tr>
<td></td>
<td>Person for scale</td>
</tr>
<tr>
<td>Location</td>
<td>Elevation</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>33.237, 78.182</td>
<td>5104 m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>33.237, 78.182</td>
<td>5092 m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>33.237, 78.182</td>
<td>5091 m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>33.237, 78.182</td>
<td>5094 m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>33.237, 78.182</td>
<td>5093 m</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix-A
<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation</th>
<th>Dimensions</th>
<th>Lithology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 33.245, 78.200</td>
<td>Elevation: 4910 m</td>
<td>Dimensions: 250 x 180 x 135 cm</td>
<td>Leucogranite</td>
<td>Slightly buried, very ‘fresh’</td>
</tr>
<tr>
<td>Location: 33.245, 78.201</td>
<td>Elevation: 4905 m</td>
<td>Dimensions: 270 x 220 x 140 cm</td>
<td>Granite</td>
<td>Slightly buried, moderately weathered, boulder shows iron-staining</td>
</tr>
<tr>
<td>Location: 33.245, 78.201</td>
<td>Elevation: 4904 m</td>
<td>Dimensions: 450 x 420 x 170 cm</td>
<td>Granite</td>
<td>Moderately buried, difficult to sample due to hardness</td>
</tr>
<tr>
<td>Location: 33.245, 78.201</td>
<td>Elevation: 4886 m</td>
<td>Dimensions: 200 x 170 x 80 cm</td>
<td>Granite</td>
<td>Deeply buried, little sign of weathering</td>
</tr>
<tr>
<td>Location: 33.244, 78.202</td>
<td>Elevation: 4899 m</td>
<td>Dimensions: 270 x 120 x 100 cm</td>
<td>Metagranite</td>
<td>Slightly buried, slightly foliated granite, heavy desert varnish, easy to sample along foliations</td>
</tr>
</tbody>
</table>
Appendix-A

<table>
<thead>
<tr>
<th>Moraine PM-2</th>
</tr>
</thead>
</table>
| ![India-56](image1.jpg) | Location: 33.244, 78.198
Elevation: 4921 m
Dimensions: ~100 x ~50 x ~90 cm
Lithology: Granite
Notes: Slightly buried, slight desert varnish
Person for scale |
| ![India-57](image2.jpg) | Location: 33.245, 78.199
Elevation: 4921 m
Dimensions: ~100 x ~50 x ~90 cm
Lithology: Granite
Notes: Slightly buried, slight desert varnish
People for scale |
Appendix-A

<table>
<thead>
<tr>
<th>India-45</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-45.jpg) | Location: 33.226, 78.166
Elevation: 5266 m
Dimensions: 175 x 110 x 120 cm
Lithology: Granite
Notes: Not buried, boulder looks very ‘fresh’, only slight desert varnish
Field notebook for scale |

<table>
<thead>
<tr>
<th>India-46</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-46.jpg) | Location: 33.226, 78.167
Elevation: 5263 m
Dimensions: 170 x 190 x 170 cm
Lithology: Metagranite
Notes: Not buried, slight desert varnish more prevalent on sides of boulders
Person for scale |

<table>
<thead>
<tr>
<th>India-47</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-47.jpg) | Location: 33.226, 78.167
Elevation: 5257 m
Dimensions: 170 x 130 x 135 cm
Lithology: Granite
Notes: Not buried, only slight desert varnish
Person for scale |

<table>
<thead>
<tr>
<th>India-48</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-48.jpg) | Location: 33.226, 78.167
Elevation: 5267 m
Dimensions: 185 x 90 x 95 cm
Lithology: Granite
Notes: Slightly buried, only slight desert varnish
Person for scale |

<table>
<thead>
<tr>
<th>India-49</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-49.jpg) | Location: 33.226, 78.167
Elevation: 5260 m
Dimensions: 155 x 110 x 125 cm
Lithology: Granite
Notes: Not buried, small cavity beneath boulder, only slight desert varnish
Person for scale |

<table>
<thead>
<tr>
<th>India-50</th>
<th>Moraine PM-3</th>
</tr>
</thead>
</table>
| ![Image](India-50.jpg) | Location: 33.226, 78.167
Elevation: 5265 m
Dimensions: ~80 x ~50 x ~100 cm
Lithology: Granite
Notes: Not buried, moderate desert varnish, some spallation on bottom of boulder
Person for scale |
<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation</th>
<th>Dimensions</th>
<th>Lithology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 32.961, 78.254</td>
<td>Elevation: 5712 m</td>
<td>Dimensions: 52 x 58 x 49 cm</td>
<td>Quartzite or quartz vein</td>
<td>Deeply buried</td>
</tr>
<tr>
<td>Location: 32.961, 78.254</td>
<td>Elevation: 5713 m</td>
<td>Dimensions: 61 x 52 x 57 cm</td>
<td>Quartzite or quartz vein</td>
<td>Slightly buried</td>
</tr>
<tr>
<td>Location: 32.961, 78.258</td>
<td>Elevation: 4710 m</td>
<td>Dimensions: 38 x 35 x 42 cm</td>
<td>Quartzite or quartz vein</td>
<td>Moderately buried</td>
</tr>
</tbody>
</table>
Appendix-A

<table>
<thead>
<tr>
<th>Moraine KM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-12</td>
</tr>
</tbody>
</table>
| ![Image](image1.png) | Location: 32.983, 78.214
Dimensions: 76 x 192 x 113 cm
Elevation: 4785 m
Lithology: Gneiss
Notes: Slightly buried
Rock hammer for scale |
| **TM-13** |
| ![Image](image2.png) | Location: 32.983, 78.214
Dimensions: 52 x 103 x 197 cm
Elevation: 4785 m
Lithology: Gneiss
Notes: Slightly buried
Rock hammer for scale |
| **TM-14** |
| ![Image](image3.png) | Location: 32.983, 78.214
Dimensions: 97 x 123 x 278 cm
Elevation: 4782 m
Lithology: Gneiss
Notes: Slightly buried
Backpack for scale |
| **TM-15** |
| ![Image](image4.png) | Location: 32.983, 78.214
Dimensions: 121 x 57 x 143 cm
Elevation: 4781 m
Lithology: Leucogranite
Notes: Slightly buried
Rock hammer for scale |
| **TM-16** |
| ![Image](image5.png) | Location: 32.984, 78.215
Dimensions: 123 x 78 x 147 cm
Elevation: 4768 m
Lithology: Granite
Notes: Slightly buried
No scale |
| **TM-17** |
| ![Image](image6.png) | Location: 32.984, 78.216
Dimensions: 137 x 85 x 192 cm
Elevation: 4762 m
Lithology: Gneiss
Notes: Moderately buried
Backpack for scale |
<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation</th>
<th>Dimensions</th>
<th>Lithology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: 32.982, 78.211</td>
<td>4859 m</td>
<td>86 x 75 x 121 cm</td>
<td>Gneiss</td>
<td>Rock hammer for scale</td>
</tr>
<tr>
<td>Location: 32.982, 78.212</td>
<td>4858 m</td>
<td>100 x 152 x 185 cm</td>
<td>Gneiss</td>
<td>Rock hammer for scale</td>
</tr>
<tr>
<td>Location: 32.982, 78.212</td>
<td>4855 m</td>
<td>74 x 174 x 225 cm</td>
<td>Gneiss</td>
<td>Rock hammer and field notebook for scale</td>
</tr>
<tr>
<td>Location: 32.982, 78.212</td>
<td>4851 m</td>
<td>73 x 138 x 136 cm</td>
<td>Gneiss</td>
<td>Backpack for scale</td>
</tr>
<tr>
<td>Location: 32.983, 78.212</td>
<td>4850 m</td>
<td>123 x 174 x 290 cm</td>
<td>Gneiss</td>
<td>Backpack for scale</td>
</tr>
<tr>
<td>Location: 32.984, 78.212</td>
<td>4850 m</td>
<td>127 x 138 x 205 cm</td>
<td>Gneiss</td>
<td>Person for scale</td>
</tr>
<tr>
<td></td>
<td>Moraine KM-3</td>
<td>Location: 32.977, 78.203</td>
<td>Elevation: 5010 m</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>TM-1</td>
<td>Dimensions: 70 x 100 x 124 cm</td>
<td>Lithology: Gneiss</td>
<td>Notes: Person for scale</td>
<td></td>
</tr>
<tr>
<td>TM-2</td>
<td>Location: 32.977, 78.203</td>
<td>Dimensions: 66 x 90 x 68 cm</td>
<td>Lithology: Gneiss</td>
<td>Notes: Person and backpack for scale</td>
</tr>
<tr>
<td>TM-3</td>
<td>Location: 32.978, 78.203</td>
<td>Dimensions: 81 x 101 x 126 cm</td>
<td>Lithology: Gneiss</td>
<td>Notes: Person for scale</td>
</tr>
<tr>
<td>TM-4</td>
<td>Location: 32.978, 78.203</td>
<td>Dimensions: 84 x 80 x 163 cm</td>
<td>Lithology: Gneiss</td>
<td>Notes: Person and rock hammer for scale</td>
</tr>
<tr>
<td>Moraine KM-4</td>
<td>Location: 32.971, 78.182</td>
<td>Elevation: 5306 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-B</td>
<td>Dimensions: 170 x 252 x 160 cm</td>
<td>Lithology: Augen gneiss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Deeply buried, little sign of weathering</td>
<td>Photo courtesy Jason Dortch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Person for scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-C</td>
<td>Location: 32.971, 78.182</td>
<td>Elevation: 5309 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions: 180 x 160 x 70 cm</td>
<td>Lithology: Granite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
<td>Photo courtesy Jason Dortch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Person for scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-D</td>
<td>Location: 32.971, 78.182</td>
<td>Elevation: 5309 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions: 290 x 180 x 90 cm</td>
<td>Lithology: Metagranite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
<td>Photo courtesy Jason Dortch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field notebook for scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-F</td>
<td>Location: 32.971, 78.181</td>
<td>Elevation: 5318 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensions: 170 x 170 x 100 cm</td>
<td>Lithology: Metagranite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
<td>Photo courtesy Jason Dortch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock hammer and field notebook for scale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>